Kontakti      O sajtu

Aritmetička progresija. Formula za n-ti član aritmetičke progresije C 12 formula aritmetičke progresije za n brojeva


Da, da: aritmetička progresija nije igračka za tebe :)

Pa, prijatelji, ako čitate ovaj tekst, onda mi interni cap-dokaz govori da još ne znate šta je aritmetička progresija, ali stvarno (ne, onako: JAOO!) želite da znate. Stoga vas neću mučiti dugim uvodima i prijeći ću odmah na stvar.

Prvo, par primjera. Pogledajmo nekoliko skupova brojeva:

  • 1; 2; 3; 4; ...
  • 15; 20; 25; 30; ...
  • $\sqrt(2);\ 2\sqrt(2);\ 3\sqrt(2);...$

Šta je zajedničko svim ovim setovima? Na prvi pogled ništa. Ali zapravo postoji nešto. naime: svaki sljedeći element se razlikuje od prethodnog za isti broj.

Procijenite sami. Prvi set su jednostavno uzastopni brojevi, svaki sljedeći je jedan više od prethodnog. U drugom slučaju, razlika između susjednih brojeva je već pet, ali je ta razlika i dalje konstantna. U trećem slučaju, korijeni su u potpunosti. Međutim, $2\sqrt(2)=\sqrt(2)+\sqrt(2)$, i $3\sqrt(2)=2\sqrt(2)+\sqrt(2)$, tj. i u ovom slučaju, svaki sljedeći element jednostavno se povećava za $\sqrt(2)$ (i ne bojte se da je ovaj broj iracionalan).

Dakle: svi takvi nizovi se nazivaju aritmetičke progresije. Hajde da damo striktnu definiciju:

Definicija. Niz brojeva u kojem se svaki sljedeći razlikuje od prethodnog za potpuno isti iznos naziva se aritmetička progresija. Sam iznos za koji se brojevi razlikuju naziva se razlika progresije i najčešće se označava slovom $d$.

Napomena: $\left(((a)_(n)) \right)$ je sama progresija, $d$ je njena razlika.

I samo nekoliko važnih napomena. Prvo, uzima se u obzir samo napredovanje naredio redosled brojeva: dozvoljeno je da se čitaju striktno onim redom kojim su napisani - i ništa drugo. Brojevi se ne mogu preurediti ili zamijeniti.

Drugo, sam niz može biti ili konačan ili beskonačan. Na primjer, skup (1; 2; 3) je očigledno konačna aritmetička progresija. Ali ako nešto napišete u duhu (1; 2; 3; 4; ...) - to je već beskonačna progresija. Čini se da trotočka iza četiri nagoveštava da predstoji još dosta brojeva. Beskonačno mnogo, na primjer. :)

Također bih želio napomenuti da se progresije mogu povećavati ili smanjivati. Već smo vidjeli sve veće - isti skup (1; 2; 3; 4; ...). Evo primjera opadajuće progresije:

  • 49; 41; 33; 25; 17; ...
  • 17,5; 12; 6,5; 1; −4,5; −10; ...
  • $\sqrt(5);\ \sqrt(5)-1;\ \sqrt(5)-2;\ \sqrt(5)-3;...$

U redu, u redu: posljednji primjer može izgledati previše komplikovano. Ali ostalo, mislim, razumete. Stoga uvodimo nove definicije:

Definicija. Aritmetička progresija zove:

  1. povećava se ako je svaki sljedeći element veći od prethodnog;
  2. smanjuje se ako je, naprotiv, svaki sljedeći element manji od prethodnog.

Osim toga, postoje takozvani "stacionarni" nizovi - oni se sastoje od istog broja koji se ponavlja. Na primjer, (3; 3; 3; ...).

Ostaje samo jedno pitanje: kako razlikovati rastuću progresiju od opadajuće? Srećom, ovdje sve zavisi samo od predznaka broja $d$, tj. razlike u napredovanju:

  1. Ako je $d \gt 0$, tada se progresija povećava;
  2. Ako je $d \lt 0$, onda se progresija očito smanjuje;
  3. Konačno, postoji slučaj $d=0$ - u ovom slučaju se cjelokupna progresija svodi na stacionarni niz identičnih brojeva: (1; 1; 1; 1; ...), itd.

Pokušajmo izračunati razliku $d$ za tri opadajuće progresije navedene gore. Da biste to učinili, dovoljno je uzeti bilo koja dva susjedna elementa (na primjer, prvi i drugi) i oduzeti broj s lijeve strane od broja s desne strane. To će izgledati ovako:

  • 41−49=−8;
  • 12−17,5=−5,5;
  • $\sqrt(5)-1-\sqrt(5)=-1$.

Kao što vidimo, u sva tri slučaja razlika je zapravo negativna. A sada kada smo manje-više shvatili definicije, vrijeme je da shvatimo kako se progresije opisuju i koja svojstva imaju.

Termini progresije i formula recidiva

Budući da se elementi naših sekvenci ne mogu zamijeniti, mogu se numerisati:

\[\left(((a)_(n)) \right)=\left\( ((a)_(1)),\ ((a)_(2)),((a)_(3 )),... \desno\)\]

Pojedinačni elementi ovog skupa nazivaju se članovima progresije. Označeni su brojem: prvi član, drugi član itd.

Osim toga, kao što već znamo, susjedni termini progresije povezani su formulom:

\[((a)_(n))-((a)_(n-1))=d\Strelica desno ((a)_(n))=((a)_(n-1))+d \]

Ukratko, da biste pronašli $n$-ti član progresije, morate znati $n-1$-ti član i razliku $d$. Ova formula se naziva rekurentna, jer uz njenu pomoć možete pronaći bilo koji broj samo ako poznajete prethodni (i zapravo sve prethodne). Ovo je vrlo nezgodno, pa postoji lukavija formula koja sve izračune svodi na prvi član i razliku:

\[((a)_(n))=((a)_(1))+\left(n-1 \desno)d\]

Vjerovatno ste već naišli na ovu formulu. Vole da ga daju u svim vrstama priručnika i knjiga o rešenjima. I u svakom razumnom udžbeniku matematike jedan je od prvih.

Ipak, predlažem da malo vježbate.

Zadatak br. 1. Zapišite prva tri člana aritmetičke progresije $\left(((a)_(n)) \right)$ ako je $((a)_(1))=8,d=-5$.

Rješenje. Dakle, znamo prvi pojam $((a)_(1))=8$ i razliku progresije $d=-5$. Koristimo upravo datu formulu i zamijenimo $n=1$, $n=2$ i $n=3$:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)d; \\ & ((a)_(1))=((a)_(1))+\left(1-1 \right)d=((a)_(1))=8; \\ & ((a)_(2))=((a)_(1))+\left(2-1 \desno)d=((a)_(1))+d=8-5= 3; \\ & ((a)_(3))=((a)_(1))+\left(3-1 \desno)d=((a)_(1))+2d=8-10= -2. \\ \end(poravnati)\]

Odgovor: (8; 3; −2)

To je sve! Imajte na umu: naš napredak se smanjuje.

Naravno, $n=1$ se ne može zamijeniti - prvi član nam je već poznat. Međutim, zamjenom jedinstva, uvjerili smo se da i za prvi mandat naša formula funkcionira. U drugim slučajevima sve se svelo na banalnu aritmetiku.

Zadatak br. 2. Zapišite prva tri člana aritmetičke progresije ako je njen sedmi član jednak −40, a sedamnaesti član jednak −50.

Rješenje. Zapišimo uslov problema poznatim terminima:

\[((a)_(7))=-40;\quad ((a)_(17))=-50.\]

\[\left\( \begin(align) & ((a)_(7))=((a)_(1))+6d \\ & ((a)_(17))=((a) _(1))+16d \\ \end(poravnati) \desno.\]

\[\left\( \begin(poravnati) & ((a)_(1))+6d=-40 \\ & ((a)_(1))+16d=-50 \\ \end(poravnati) \desno.\]

Stavio sam sistemski znak jer ovi zahtjevi moraju biti ispunjeni istovremeno. Zapazimo da ako oduzmemo prvu od druge jednačine (imamo pravo na to, pošto imamo sistem), dobićemo ovo:

\[\begin(align) & ((a)_(1))+16d-\left(((a)_(1))+6d \right)=-50-\left(-40 \right); \\ & ((a)_(1))+16d-((a)_(1))-6d=-50+40; \\&10d=-10; \\&d=-1. \\ \end(poravnati)\]

Tako je lako pronaći razliku u progresiji! Sve što preostaje je zamijeniti pronađeni broj u bilo koju od jednačina sistema. Na primjer, u prvom:

\[\begin(matrica) ((a)_(1))+6d=-40;\quad d=-1 \\ \Downarrow \\ ((a)_(1))-6=-40; \\ ((a)_(1))=-40+6=-34. \\ \end(matrica)\]

Sada, znajući prvi član i razliku, ostaje da pronađemo drugi i treći član:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=-34-1=-35; \\ & ((a)_(3))=((a)_(1))+2d=-34-2=-36. \\ \end(poravnati)\]

Spremni! Problem je riješen.

Odgovor: (−34; −35; −36)

Obratite pažnju na zanimljivu osobinu progresije koju smo otkrili: ako uzmemo $n$th i $m$th članove i oduzmemo ih jedan od drugog, dobićemo razliku progresije pomnoženu sa $n-m$ brojem:

\[((a)_(n))-((a)_(m))=d\cdot \lijevo(n-m \desno)\]

Jednostavno ali veoma korisno svojstvo, koji svakako trebate znati - uz njegovu pomoć možete značajno ubrzati rješavanje mnogih problema progresije. Evo jasnog primjera ovoga:

Zadatak br. 3. Peti član aritmetičke progresije je 8,4, a deseti član 14,4. Pronađite petnaesti član ove progresije.

Rješenje. Budući da je $((a)_(5))=8.4$, $((a)_(10))=14.4$, i moramo pronaći $((a)_(15))$, primjećujemo sljedeće:

\[\begin(align) & ((a)_(15))-((a)_(10))=5d; \\ & ((a)_(10))-((a)_(5))=5d. \\ \end(poravnati)\]

Ali po uslovu $((a)_(10))-((a)_(5))=14.4-8.4=6$, dakle $5d=6$, od čega imamo:

\[\begin(align) & ((a)_(15))-14,4=6; \\ & ((a)_(15))=6+14,4=20,4. \\ \end(poravnati)\]

Odgovor: 20.4

To je sve! Nismo morali da pravimo sisteme jednačina i da izračunamo prvi član i razliku - sve je rešeno u samo par redova.

Pogledajmo sada drugu vrstu problema – traženje negativnih i pozitivnih pojmova progresije. Nije tajna da ako se progresija povećava, a njen prvi pojam je negativan, tada će se prije ili kasnije u njoj pojaviti pozitivni termini. I obrnuto: uslovi opadajuće progresije će prije ili kasnije postati negativni.

U isto vrijeme, nije uvijek moguće pronaći ovaj trenutak "naprijed" uzastopnim prolaskom kroz elemente. Često su problemi napisani na način da bez poznavanja formula za proračun bi trebalo nekoliko listova papira – jednostavno bismo zaspali dok bismo pronašli odgovor. Stoga, pokušajmo riješiti ove probleme na brži način.

Zadatak br. 4. Koliko negativnih članova ima u aritmetičkoj progresiji −38,5; −35,8; ...?

Rješenje. Dakle, $((a)_(1))=-38,5$, $((a)_(2))=-35,8$, odakle odmah nalazimo razliku:

Imajte na umu da je razlika pozitivna, pa se progresija povećava. Prvi član je negativan, tako da ćemo zaista u nekom trenutku naići na pozitivne brojeve. Pitanje je samo kada će se to dogoditi.

Pokušajmo saznati koliko dugo (tj. do kojeg prirodnog broja $n$) ostaje negativnost pojmova:

\[\begin(align) & ((a)_(n)) \lt 0\Strelica desno ((a)_(1))+\left(n-1 \right)d \lt 0; \\ & -38.5+\lijevo(n-1 \desno)\cdot 2.7 \lt 0;\quad \left| \cdot 10 \desno. \\ & -385+27\cdot \lijevo(n-1 \desno) \lt 0; \\ & -385+27n-27 \lt 0; \\ & 27n \lt 412; \\ & n \lt 15\frac(7)(27)\Strelica desno ((n)_(\max ))=15. \\ \end(poravnati)\]

Poslednji red zahteva neko objašnjenje. Dakle, znamo da je $n \lt 15\frac(7)(27)$. S druge strane, zadovoljavaju nas samo cjelobrojne vrijednosti broja (štaviše: $n\in \mathbb(N)$), pa je najveći dozvoljeni broj upravo $n=15$, a ni u kojem slučaju 16 .

Zadatak br. 5. U aritmetičkoj progresiji $(()_(5))=-150,(()_(6))=-147$. Pronađite broj prvog pozitivnog člana ove progresije.

Ovo bi bio potpuno isti problem kao i prethodni, ali ne znamo $((a)_(1))$. Ali susjedni pojmovi su poznati: $((a)_(5))$ i $((a)_(6))$, tako da možemo lako pronaći razliku progresije:

Uz to, pokušajmo izraziti peti član kroz prvi i razliku koristeći standardnu ​​formulu:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)\cdot d; \\ & ((a)_(5))=((a)_(1))+4d; \\ & -150=((a)_(1))+4\cdot 3; \\ & ((a)_(1))=-150-12=-162. \\ \end(poravnati)\]

Sada nastavljamo po analogiji s prethodnim zadatkom. Hajde da saznamo u kojoj točki u našem nizu će se pojaviti pozitivni brojevi:

\[\begin(align) & ((a)_(n))=-162+\left(n-1 \right)\cdot 3 \gt 0; \\ & -162+3n-3 \gt 0; \\ & 3n \gt 165; \\ & n \gt 55\Strelica desno ((n)_(\min ))=56. \\ \end(poravnati)\]

Minimalno cjelobrojno rješenje ove nejednakosti je broj 56.

Napomena: in posljednji zadatak sve se svelo na strogu nejednakost, pa nam opcija $n=55$ neće odgovarati.

Sada kada smo naučili kako riješiti jednostavne probleme, prijeđimo na složenije. Ali prvo, proučimo još jedno vrlo korisno svojstvo aritmetičkih progresija, koje će nam uštedjeti mnogo vremena i nejednakih ćelija u budućnosti. :)

Aritmetička sredina i jednaka uvlačenja

Razmotrimo nekoliko uzastopnih članova rastuće aritmetičke progresije $\left(((a)_(n)) \right)$. Pokušajmo ih označiti na brojevnoj pravoj:

Uvjeti aritmetičke progresije na brojevnoj pravoj

Posebno sam označio proizvoljne termine $((a)_(n-3)),...,((a)_(n+3))$, a ne neke $((a)_(1)) ,\ ((a)_(2)),\ ((a)_(3))$, itd. Jer pravilo o kojem ću vam sada reći radi isto za sve "segmente".

A pravilo je vrlo jednostavno. Prisjetimo se ponavljajuće formule i zapišemo je za sve označene pojmove:

\[\begin(align) & ((a)_(n-2))=((a)_(n-3))+d; \\ & ((a)_(n-1))=((a)_(n-2))+d; \\ & ((a)_(n))=((a)_(n-1))+d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n+1))+d; \\ \end(poravnati)\]

Međutim, ove jednakosti se mogu drugačije napisati:

\[\begin(align) & ((a)_(n-1))=((a)_(n))-d; \\ & ((a)_(n-2))=((a)_(n))-2d; \\ & ((a)_(n-3))=((a)_(n))-3d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(n+3))=((a)_(n))+3d; \\ \end(poravnati)\]

Pa, pa šta? A činjenica da pojmovi $((a)_(n-1))$ i $((a)_(n+1))$ leže na istoj udaljenosti od $((a)_(n)) $ . I ova udaljenost je jednaka $d$. Isto se može reći i za pojmove $((a)_(n-2))$ i $((a)_(n+2))$ - oni su također uklonjeni iz $((a)_(n) )$ na istoj udaljenosti jednakoj $2d$. Možemo nastaviti do beskonačnosti, ali značenje je dobro ilustrovano slikom


Uslovi progresije leže na istoj udaljenosti od centra

Šta ovo znači za nas? To znači da se $((a)_(n))$ može pronaći ako su susjedni brojevi poznati:

\[((a)_(n))=\frac(((a)_(n-1))+((a)_(n+1)))(2)\]

Izveli smo odličnu izjavu: svaki član aritmetičke progresije jednak je aritmetičkoj sredini njegovih susjednih članova! Štaviše: možemo se odmaknuti od našeg $((a)_(n))$ lijevo i desno ne za jedan korak, već za $k$ koraka - i formula će i dalje biti tačna:

\[((a)_(n))=\frac(((a)_(n-k))+((a)_(n+k)))(2)\]

One. lako možemo pronaći neke $((a)_(150))$ ako znamo $((a)_(100))$ i $((a)_(200))$, jer $(( a)_ (150))=\frac(((a)_(100))+((a)_(200)))(2)$. Na prvi pogled može izgledati da nam ta činjenica ne daje ništa korisno. Međutim, u praksi, mnogi problemi su posebno skrojeni za korištenje aritmetičke sredine. Pogledaj:

Zadatak br. 6. Pronađite sve vrijednosti $x$ za koje su brojevi $-6((x)^(2))$, $x+1$ i $14+4((x)^(2))$ uzastopni termini aritmetičku progresiju (po navedenom redoslijedu).

Rješenje. Pošto su ovi brojevi članovi progresije, za njih je zadovoljen uslov aritmetičke sredine: centralni element $x+1$ može se izraziti u terminima susednih elemenata:

\[\begin(align) & x+1=\frac(-6((x)^(2))+14+4((x)^(2)))(2); \\ & x+1=\frac(14-2((x)^(2)))(2); \\ & x+1=7-((x)^(2)); \\ & ((x)^(2))+x-6=0. \\ \end(poravnati)\]

Ispalo je klasično kvadratna jednačina. Njegovi korijeni: $x=2$ i $x=-3$ su odgovori.

Odgovor: −3; 2.

Zadatak br. 7. Pronađite vrijednosti $$ za koje brojevi $-1;4-3;(()^(2))+1$ formiraju aritmetičku progresiju (tim redoslijedom).

Rješenje. Izrazimo opet srednji član kroz aritmetičku sredinu susjednih članova:

\[\begin(align) & 4x-3=\frac(x-1+((x)^(2))+1)(2); \\ & 4x-3=\frac(((x)^(2))+x)(2);\quad \left| \cdot 2 \desno.; \\ & 8x-6=((x)^(2))+x; \\ & ((x)^(2))-7x+6=0. \\ \end(poravnati)\]

Opet kvadratna jednadžba. I opet postoje dva korijena: $x=6$ i $x=1$.

Odgovor: 1; 6.

Ako u procesu rješavanja zadatka dođete do nekih brutalnih brojeva, ili niste sasvim sigurni u tačnost pronađenih odgovora, onda postoji divna tehnika koja vam omogućava da provjerite: jesmo li ispravno riješili problem?

Recimo da smo u zadatku br. 6 dobili odgovore −3 i 2. Kako možemo provjeriti da li su ti odgovori tačni? Hajde da ih samo uključimo u originalno stanje i vidimo šta će se desiti. Da vas podsjetim da imamo tri broja ($-6(()^(2))$, $+1$ i $14+4(()^(2))$), koji moraju formirati aritmetičku progresiju. Zamijenimo $x=-3$:

\[\begin(align) & x=-3\Strelica desno \\ & -6((x)^(2))=-54; \\ & x+1=-2; \\ & 14+4((x)^(2))=50. \end(poravnati)\]

Dobili smo brojeve −54; −2; 50 koje se razlikuju za 52 je nesumnjivo aritmetička progresija. Ista stvar se dešava za $x=2$:

\[\begin(align) & x=2\Strelica desno \\ & -6((x)^(2))=-24; \\ & x+1=3; \\ & 14+4((x)^(2))=30. \end(poravnati)\]

Opet progresija, ali sa razlikom od 27. Dakle, problem je ispravno riješen. Oni koji žele mogu sami provjeriti drugi problem, ali odmah ću reći: i tu je sve ispravno.

Uglavnom, rješavajući posljednje probleme, naišli smo na još jedan zanimljiva činjenica, što takođe treba zapamtiti:

Ako su tri broja takva da je drugi aritmetička sredina prvog i posljednjeg, onda ti brojevi čine aritmetičku progresiju.

U budućnosti, razumevanje ove izjave omogućiće nam da doslovno „konstruišemo“ neophodne progresije na osnovu uslova problema. Ali prije nego što se upustimo u ovakvu „konstrukciju“, treba obratiti pažnju na još jednu činjenicu, koja direktno proizlazi iz onoga o čemu je već bilo riječi.

Grupisanje i zbrajanje elemenata

Vratimo se ponovo na brojevnu osu. Napomenimo tu nekoliko članova progresije, između kojih, možda. vrijedi mnogo drugih članova:

Na brojevnoj pravoj je označeno 6 elemenata

Pokušajmo izraziti “lijevi rep” kroz $((a)_(n))$ i $d$, a “desni rep” kroz $((a)_(k))$ i $d$. Vrlo je jednostavno:

\[\begin(align) & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(k-1))=((a)_(k))-d; \\ & ((a)_(k-2))=((a)_(k))-2d. \\ \end(poravnati)\]

Sada imajte na umu da su sljedeći iznosi jednaki:

\[\begin(align) & ((a)_(n))+((a)_(k))=S; \\ & ((a)_(n+1))+((a)_(k-1))=((a)_(n))+d+((a)_(k))-d= S; \\ & ((a)_(n+2))+((a)_(k-2))=((a)_(n))+2d+(a)_(k))-2d= S. \end(poravnati)\]

Jednostavno, ako za početak uzmemo u obzir dva elementa progresije, koji su ukupno jednaki nekom broju $S$, a zatim počnu koračati od ovih elemenata u suprotnim smjerovima (jedan prema drugom ili obrnuto da bi se udaljili), onda sume elemenata na koje ćemo naići će takođe biti jednaki$S$. Ovo se najjasnije može prikazati grafički:


Jednaka udubljenja daju jednake količine

Razumijevanje ove činjenice omogućit će nam da rješavamo probleme u fundamentalno više visoki nivo teškoće od onih koje smo razmatrali gore. Na primjer, ove:

Zadatak br. 8. Odredite razliku aritmetičke progresije u kojoj je prvi član 66, a proizvod drugog i dvanaestog člana najmanji mogući.

Rješenje. Hajde da zapišemo sve što znamo:

\[\begin(align) & ((a)_(1))=66; \\&d=? \\ & ((a)_(2))\cdot ((a)_(12))=\min . \end(poravnati)\]

Dakle, ne znamo razliku u progresiji $d$. Zapravo, cjelokupno rješenje će biti izgrađeno oko razlike, budući da se proizvod $((a)_(2))\cdot ((a)_(12))$ može prepisati na sljedeći način:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=66+d; \\ & ((a)_(12))=((a)_(1))+11d=66+11d; \\ & ((a)_(2))\cdot ((a)_(12))=\left(66+d \desno)\cdot \left(66+11d \right)= \\ & =11 \cdot \left(d+66 \desno)\cdot \left(d+6 \desno). \end(poravnati)\]

Za one u rezervoaru: uzeo sam ukupan množitelj od 11 iz druge zagrade. Dakle, željeni proizvod je kvadratna funkcija u odnosu na varijablu $d$. Stoga, razmotrite funkciju $f\left(d \right)=11\left(d+66 \right)\left(d+6 \right)$ - njen graf će biti parabola sa granama nagore, jer ako proširimo zagrade, dobijamo:

\[\begin(align) & f\left(d \right)=11\left(((d)^(2))+66d+6d+66\cdot 6 \right)= \\ & =11(( d)^(2))+11\cdot 72d+11\cdot 66\cdot 6 \end(align)\]

Kao što vidite, koeficijent najvećeg člana je 11 - to je pozitivan broj, tako da stvarno imamo posla s parabolom sa granama nagore:


raspored kvadratna funkcija- parabola

Napomena: ova parabola uzima svoju minimalnu vrijednost na svom vrhu sa apscisom $((d)_(0))$. Naravno, ovu apscisu možemo izračunati koristeći standardnu ​​šemu (postoji formula $((d)_(0))=(-b)/(2a)\;$), ali bi bilo mnogo razumnije primijetiti da željeni vrh leži na osnoj simetriji parabole, stoga je tačka $((d)_(0))$ jednako udaljena od korijena jednadžbe $f\left(d \right)=0$:

\[\begin(align) & f\left(d \right)=0; \\ & 11\cdot \left(d+66 \desno)\cdot \left(d+6 \right)=0; \\ & ((d)_(1))=-66;\quad ((d)_(2))=-6. \\ \end(poravnati)\]

Zato se nisam posebno žurio s otvaranjem zagrada: u njihovom izvornom obliku, korijenje je bilo vrlo, vrlo lako pronaći. Dakle, apscisa je jednaka aritmetičkoj sredini brojeva −66 i −6:

\[((d)_(0))=\frac(-66-6)(2)=-36\]

Šta nam daje otkriveni broj? Kod njega traženi proizvod poprima najmanju vrijednost (usput rečeno, nikada nismo izračunali $((y)_(\min ))$ - to se od nas ne traži). Istovremeno, ovaj broj je razlika prvobitne progresije, tj. našli smo odgovor. :)

Odgovor: −36

Zadatak br. 9. Između brojeva $-\frac(1)(2)$ i $-\frac(1)(6)$ ubacite tri broja tako da zajedno sa ovim brojevima čine aritmetičku progresiju.

Rješenje. U suštini, moramo napraviti niz od pet brojeva, s prvim i posljednjim brojem već poznatim. Označimo brojeve koji nedostaju varijablama $x$, $y$ i $z$:

\[\left(((a)_(n)) \right)=\left\( -\frac(1)(2);x;y;z;-\frac(1)(6) \right\ )\]

Imajte na umu da je broj $y$ “sredina” našeg niza - jednako je udaljen od brojeva $x$ i $z$, te od brojeva $-\frac(1)(2)$ i $-\frac (1)( 6)$. A ako trenutno ne možemo dobiti $y$ iz brojeva $x$ i $z$, onda je situacija drugačija sa krajevima progresije. Prisjetimo se aritmetičke sredine:

Sada, znajući $y$, naći ćemo preostale brojeve. Imajte na umu da $x$ leži između brojeva $-\frac(1)(2)$ i $y=-\frac(1)(3)$ koje smo upravo pronašli. Zbog toga

Koristeći slično razmišljanje, nalazimo preostali broj:

Spremni! Pronašli smo sva tri broja. Upišimo ih u odgovor onim redom kojim ih treba umetnuti između originalnih brojeva.

Odgovor: $-\frac(5)(12);\ -\frac(1)(3);\ -\frac(1)(4)$

Zadatak br. 10. Između brojeva 2 i 42 ubacite nekoliko brojeva koji zajedno sa ovim brojevima čine aritmetičku progresiju, ako znate da je zbir prvog, drugog i posljednjeg umetnutih brojeva 56.

Rješenje. Još složeniji problem, koji se, međutim, rješava po istoj shemi kao i prethodni - kroz aritmetičku sredinu. Problem je što ne znamo tačno koliko brojeva treba uneti. Stoga, pretpostavimo za definitivno da će nakon ubacivanja svega biti tačno $n$ brojeva, i prvi od njih je 2, a posljednji je 42. U ovom slučaju, tražena aritmetička progresija može se predstaviti u obliku:

\[\left(((a)_(n)) \right)=\left\( 2;((a)_(2));((a)_(3));...;(( a)_(n-1));42 \desno\)\]

\[((a)_(2))+((a)_(3))+((a)_(n-1))=56\]

Imajte na umu, međutim, da su brojevi $((a)_(2))$ i $((a)_(n-1))$ dobijeni iz brojeva 2 i 42 na rubovima za jedan korak jedan prema drugom, tj. do centra niza. A to znači to

\[((a)_(2))+((a)_(n-1))=2+42=44\]

Ali tada se gore napisani izraz može prepisati na sljedeći način:

\[\begin(align) & ((a)_(2))+((a)_(3))+((a)_(n-1))=56; \\ & \left(((a)_(2))+((a)_(n-1)) \right)+((a)_(3))=56; \\ & 44+((a)_(3))=56; \\ & ((a)_(3))=56-44=12. \\ \end(poravnati)\]

Znajući $((a)_(3))$ i $((a)_(1))$, lako možemo pronaći razliku u progresiji:

\[\begin(align) & ((a)_(3))-((a)_(1))=12-2=10; \\ & ((a)_(3))-((a)_(1))=\left(3-1 \right)\cdot d=2d; \\ & 2d=10\Strelica desno d=5. \\ \end(poravnati)\]

Sve što ostaje je pronaći preostale pojmove:

\[\begin(align) & ((a)_(1))=2; \\ & ((a)_(2))=2+5=7; \\ & ((a)_(3))=12; \\ & ((a)_(4))=2+3\cdot 5=17; \\ & ((a)_(5))=2+4\cdot 5=22; \\ & ((a)_(6))=2+5\cdot 5=27; \\ & ((a)_(7))=2+6\cdot 5=32; \\ & ((a)_(8))=2+7\cdot 5=37; \\ & ((a)_(9))=2+8\cdot 5=42; \\ \end(poravnati)\]

Tako ćemo već na 9. koraku doći do lijevog kraja niza - broja 42. Ukupno je trebalo ubaciti samo 7 brojeva: 7; 12; 17; 22; 27; 32; 37.

Odgovor: 7; 12; 17; 22; 27; 32; 37

Riječni problemi s progresijama

U zaključku, želio bih razmotriti nekoliko relativno jednostavni zadaci. Pa, onako jednostavno: većini učenika koji uče matematiku u školi, a nisu pročitali ono što je gore napisano, ovi problemi mogu izgledati teški. Ipak, ovo su tipovi zadataka koji se pojavljuju na OGE-u i Jedinstvenom državnom ispitu iz matematike, pa preporučujem da se s njima upoznate.

Zadatak br. 11. Tim je u januaru proizveo 62 dijela, au svakom sljedećem mjesecu proizveo je 14 dijelova više nego u prethodnom mjesecu. Koliko je delova tim proizveo u novembru?

Rješenje. Očigledno je da će broj dijelova navedenih po mjesecima predstavljati rastuću aritmetičku progresiju. Štaviše:

\[\begin(align) & ((a)_(1))=62;\quad d=14; \\ & ((a)_(n))=62+\left(n-1 \desno)\cdot 14. \\ \end(align)\]

Novembar je 11. mjesec u godini, tako da moramo pronaći $((a)_(11))$:

\[((a)_(11))=62+10\cdot 14=202\]

Stoga će u novembru biti proizvedeno 202 dijela.

Zadatak br. 12. Knjigovezačka radionica je u januaru uvezala 216 knjiga, au svakom narednom mjesecu uvezala je po 4 knjige više nego u prethodnom mjesecu. Koliko knjiga je radionica povezala u decembru?

Rješenje. Sve isto:

$\begin(align) & ((a)_(1))=216;\quad d=4; \\ & ((a)_(n))=216+\left(n-1 \desno)\cdot 4. \\ \end(align)$

Decembar je posljednji, 12. mjesec u godini, pa tražimo $((a)_(12))$:

\[((a)_(12))=216+11\cdot 4=260\]

Ovo je odgovor - u decembru će biti ukoričeno 260 knjiga.

Pa, ako ste do sada pročitali, žurim da vam čestitam: uspješno ste završili „kurs mladog borca“ u aritmetičkim progresijama. Možete sa sigurnošću preći na sljedeću lekciju, gdje ćemo proučavati formulu za zbir progresije, kao i važne i vrlo korisne posljedice iz toga.

Prilikom studiranja algebre u srednja škola(9. razred) jedna od važnih tema je izučavanje brojevnih nizova, koji uključuju progresije – geometrijske i aritmetičke. U ovom članku ćemo pogledati aritmetičku progresiju i primjere s rješenjima.

Šta je aritmetička progresija?

Da bi se ovo razumjelo, potrebno je definirati o kojoj se progresiji radi, kao i navesti osnovne formule koje će se kasnije koristiti u rješavanju problema.

Aritmetička ili algebarska progresija je skup uređenih racionalnih brojeva, čiji se svaki član razlikuje od prethodnog za neku konstantnu vrijednost. Ova vrijednost se naziva razlika. To jest, znajući bilo koji član uređenog niza brojeva i razliku, možete vratiti cjelokupnu aritmetičku progresiju.

Dajemo primjer. Sljedeći niz brojeva će biti aritmetička progresija: 4, 8, 12, 16, ..., pošto je razlika u ovom slučaju 4 (8 - 4 = 12 - 8 = 16 - 12). Ali skup brojeva 3, 5, 8, 12, 17 se više ne može pripisati tipu progresije koji se razmatra, jer razlika za njega nije konstantna vrijednost (5 - 3 ≠ 8 - 5 ≠ 12 - 8 ≠ 17 - 12).

Važne formule

Predstavimo sada osnovne formule koje će biti potrebne za rješavanje problema korištenjem aritmetičke progresije. Označimo simbolom a n n-ti termin sekvence gdje je n cijeli broj. Razliku označavamo latiničnim slovom d. Tada su važeći sljedeći izrazi:

  1. Za određivanje vrijednosti n-tog člana prikladna je sljedeća formula: a n = (n-1)*d+a 1 .
  2. Odrediti zbir prvih n članova: S n = (a n +a 1)*n/2.

Da bismo razumjeli bilo koji primjer aritmetičke progresije sa rješenjima u 9. razredu, dovoljno je zapamtiti ove dvije formule, jer se svaki problem tipa koji se razmatra zasniva na njihovoj upotrebi. Također treba imati na umu da je razlika u progresiji određena formulom: d = a n - a n-1.

Primjer #1: pronalaženje nepoznatog člana

Navedimo jednostavan primjer aritmetičke progresije i formule koje je potrebno koristiti za rješavanje.

Neka je zadan niz 10, 8, 6, 4, ..., u njemu morate pronaći pet članova.

Već iz uslova zadatka proizilazi da su prva 4 člana poznata. Peti se može definisati na dva načina:

  1. Prvo izračunajmo razliku. Imamo: d = 8 - 10 = -2. Slično, možete uzeti bilo koja druga dva člana koji stoje jedan pored drugog. Na primjer, d = 4 - 6 = -2. Pošto je poznato da je d = a n - a n-1, onda je d = a 5 - a 4, od čega dobijamo: a 5 = a 4 + d. Zamijenjujemo poznate vrijednosti: a 5 = 4 + (-2) = 2.
  2. Druga metoda također zahtijeva poznavanje razlike dotične progresije, tako da je prvo trebate odrediti kao što je prikazano gore (d = -2). Znajući da je prvi član a 1 = 10, koristimo formulu za n broj niza. Imamo: a n = (n - 1) * d + a 1 = (n - 1) * (-2) + 10 = 12 - 2*n. Zamjenom n = 5 u posljednji izraz dobijamo: a 5 = 12-2 * 5 = 2.

Kao što vidite, oba rješenja su dovela do istog rezultata. Imajte na umu da je u ovom primjeru razlika u progresiji d negativna vrijednost. Takvi nizovi se nazivaju opadajućim, jer je svaki sljedeći član manji od prethodnog.

Primjer #2: razlika u progresiji

Sada ćemo malo zakomplikovati zadatak, dajmo primjer kako

Poznato je da je u nekima 1. član jednak 6, a 7. član jednak 18. Potrebno je pronaći razliku i vratiti ovaj niz na 7. član.

Koristimo formulu da odredimo nepoznati pojam: a n = (n - 1) * d + a 1 . Zamenimo u njega poznate podatke iz uslova, odnosno brojeve a 1 i a 7, imamo: 18 = 6 + 6 * d. Iz ovog izraza možete lako izračunati razliku: d = (18 - 6) /6 = 2. Dakle, odgovorili smo na prvi dio zadatka.

Da biste vratili niz na 7. član, trebali biste koristiti definiciju algebarske progresije, to jest, a 2 = a 1 + d, a 3 = a 2 + d, i tako dalje. Kao rezultat, vraćamo cijeli niz: a 1 = 6, a 2 = 6 + 2=8, a 3 = 8 + 2 = 10, a 4 = 10 + 2 = 12, a 5 = 12 + 2 = 14 , a 6 = 14 + 2 = 16, a 7 = 18.

Primjer br. 3: izrada progresije

Hajde da još više zakomplikujemo problem. Sada moramo odgovoriti na pitanje kako pronaći aritmetičku progresiju. Može se dati sljedeći primjer: data su dva broja, na primjer - 4 i 5. Potrebno je napraviti algebarsku progresiju tako da se između njih smjeste još tri člana.

Prije nego počnete rješavati ovaj problem, morate razumjeti koje će mjesto dati brojevi zauzeti u budućoj progresiji. Pošto će između njih biti još tri člana, onda je a 1 = -4 i a 5 = 5. Nakon što smo ovo ustanovili, prelazimo na problem koji je sličan prethodnom. Opet, za n-ti član koristimo formulu, dobijamo: a 5 = a 1 + 4 * d. Od: d = (a 5 - a 1)/4 = (5 - (-4)) / 4 = 2,25. Ono što smo dobili ovdje nije cjelobrojna vrijednost razlike, već je to racionalan broj, tako da formule za algebarsku progresiju ostaju iste.

Sada dodajmo pronađenu razliku na 1 i vratimo nedostajuće članove progresije. Dobijamo: a 1 = - 4, a 2 = - 4 + 2,25 = - 1,75, a 3 = -1,75 + 2,25 = 0,5, a 4 = 0,5 + 2,25 = 2,75, a 5 = 2,75 + 2,25 = 5, što odgovara sa uslovima problema.

Primjer br. 4: prvi termin progresije

Nastavimo davati primjere aritmetičke progresije s rješenjima. U svim prethodnim problemima prvi broj algebarske progresije je bio poznat. Sada razmotrimo problem drugačijeg tipa: neka su data dva broja, pri čemu je a 15 = 50 i a 43 = 37. Potrebno je pronaći kojim brojem počinje ovaj niz.

Do sada korištene formule pretpostavljaju poznavanje a 1 i d. U opisu problema ništa se ne zna o ovim brojevima. Ipak, za svaki termin ćemo zapisati izraze o kojima su dostupne informacije: a 15 = a 1 + 14 * d i a 43 = a 1 + 42 * d. Dobili smo dvije jednačine u kojima postoje 2 nepoznate veličine (a 1 i d). To znači da se problem svodi na rješavanje sistema linearnih jednačina.

Najlakši način da se riješi ovaj sistem je izraziti 1 u svakoj jednačini i zatim uporediti rezultirajuće izraze. Prva jednadžba: a 1 = a 15 - 14 * d = 50 - 14 * d; druga jednadžba: a 1 = a 43 - 42 * d = 37 - 42 * d. Izjednačavanjem ovih izraza dobijamo: 50 - 14 * d = 37 - 42 * d, odakle je razlika d = (37 - 50) / (42 - 14) = - 0,464 (date su samo 3 decimale).

Znajući d, možete koristiti bilo koji od 2 gornja izraza za 1. Na primjer, prvo: a 1 = 50 - 14 * d = 50 - 14 * (- 0,464) = 56,496.

Ako sumnjate u dobijeni rezultat, možete ga provjeriti, na primjer, odrediti 43. član progresije, koji je naveden u uvjetu. Dobijamo: a 43 = a 1 + 42 * d = 56,496 + 42 * (- 0,464) = 37,008. Mala greška je zbog činjenice da je u proračunima korišteno zaokruživanje na hiljaditi dio.

Primjer br. 5: iznos

Pogledajmo sada nekoliko primjera s rješenjima za zbir aritmetičke progresije.

Neka je data numerička progresija sljedećeg oblika: 1, 2, 3, 4, ...,. Kako izračunati zbir 100 ovih brojeva?

Zahvaljujući razvoju računarske tehnologije, moguće je riješiti ovaj problem, odnosno sabrati sve brojeve uzastopno, što će računar učiniti čim osoba pritisne tipku Enter. Međutim, problem se može riješiti mentalno ako obratite pažnju da je prikazani niz brojeva algebarska progresija, a njegova razlika je jednaka 1. Primjenom formule za zbir dobijamo: S n = n * (a 1 + a n) / 2 = 100 * (1 + 100) / 2 = 5050.

Zanimljivo je da je ovaj problem nazvan „Gausov” jer je početkom 18. veka slavni Nemac, još uvek samo 10-godišnjak, uspeo da ga reši u svojoj glavi za nekoliko sekundi. Dječak nije znao formulu za zbir algebarske progresije, ali je primijetio da ako dodate brojeve na krajevima niza u parovima, uvijek dobijete isti rezultat, odnosno 1 + 100 = 2 + 99 = 3 + 98 = ..., a pošto će ovi zbroji biti tačno 50 (100 / 2), onda je za tačan odgovor dovoljno pomnožiti 50 sa 101.

Primjer br. 6: zbir članova od n do m

Još jedan tipičan primjer zbira aritmetičke progresije je sljedeći: dajući niz brojeva: 3, 7, 11, 15, ..., morate pronaći koliko će biti jednak zbir njegovih članova od 8 do 14 .

Problem se rješava na dva načina. Prvi od njih uključuje pronalaženje nepoznatih pojmova od 8 do 14, a zatim njihovo sumiranje uzastopno. Budući da postoji malo termina, ova metoda nije baš radno intenzivna. Ipak, predlaže se rješavanje ovog problema korištenjem druge metode, koja je univerzalnija.

Ideja je dobiti formulu za zbir algebarske progresije između pojmova m i n, gdje su n > m cijeli brojevi. Za oba slučaja pišemo dva izraza za zbir:

  1. S m = m * (a m + a 1) / 2.
  2. S n = n * (a n + a 1) / 2.

Pošto je n > m, očigledno je da 2. zbir uključuje prvi. Posljednji zaključak znači da ako uzmemo razliku između ovih zbira i dodamo joj pojam a m (u slučaju uzimanja razlike, ona se oduzme od zbira S n), dobićemo neophodan odgovor na problem. Imamo: S mn = S n - S m + a m =n * (a 1 + a n) / 2 - m *(a 1 + a m)/2 + a m = a 1 * (n - m) / 2 + a n * n/2 + a m * (1- m/2). U ovaj izraz potrebno je zamijeniti formule za n i a m. Tada dobijamo: S mn = a 1 * (n - m) / 2 + n * (a 1 + (n - 1) * d) / 2 + (a 1 + (m - 1) * d) * (1 - m / 2) = a 1 * (n - m + 1) + d * n * (n - 1) / 2 + d *(3 * m - m 2 - 2) / 2.

Rezultirajuća formula je pomalo glomazna, međutim, zbir S mn ovisi samo o n, m, a 1 i d. U našem slučaju, a 1 = 3, d = 4, n = 14, m = 8. Zamjenom ovih brojeva dobijamo: S mn = 301.

Kao što se vidi iz gornjih rješenja, svi problemi se zasnivaju na poznavanju izraza za n-ti član i formule za zbir skupa prvih članova. Prije nego počnete rješavati bilo koji od ovih problema, preporučuje se da pažljivo pročitate uvjet, jasno shvatite šta trebate pronaći i tek onda nastaviti s rješavanjem.

Još jedan savjet je da težite jednostavnosti, odnosno, ako možete odgovoriti na pitanje bez korištenja složenih matematičkih proračuna, onda morate učiniti upravo to, jer je u ovom slučaju vjerovatnoća da ćete pogriješiti manja. Na primjer, u primjeru aritmetičke progresije sa rješenjem br. 6, moglo bi se zaustaviti na formuli S mn = n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m, i podijeliti cjelokupni problem u zasebne podzadatke (V u ovom slučaju prvo pronađite pojmove a n i a m).

Ako sumnjate u dobijeni rezultat, preporučuje se da ga provjerite, kao što je to učinjeno u nekim od navedenih primjera. Saznali smo kako pronaći aritmetičku progresiju. Ako to shvatite, nije tako teško.

Šta je glavna suština formule?

Ova formula vam omogućava da pronađete bilo koji NJEGOVIM BROJEM" n" .

Naravno, morate znati i prvi pojam a 1 i razlika u napredovanju d, pa, bez ovih parametara ne možete zapisati određenu progresiju.

Pamtiti (ili plakati) ovu formulu nije dovoljno. Morate razumjeti njegovu suštinu i primijeniti formulu u raznim problemima. I takođe da ne zaboravim u pravom trenutku, da...) Kako ne zaboravi- Ne znam. I ovdje kako zapamtiti Ako bude potrebno, svakako ću Vas savjetovati. Za one koji završe lekciju do kraja.)

Dakle, pogledajmo formulu za n-ti član aritmetičke progresije.

Šta je uopšte formula? Usput, pogledajte ako niste pročitali. Tamo je sve jednostavno. Ostaje da se shvati šta je to n-ti termin.

Progresija se općenito može zapisati kao niz brojeva:

a 1, a 2, a 3, a 4, a 5, .....

a 1- označava prvi član aritmetičke progresije, a 3- treći član, a 4- četvrti, i tako dalje. Ako nas zanima peti mandat, recimo da radimo a 5, ako je sto dvadeseti - s a 120.

Kako to možemo definisati uopšteno? bilo kojičlan aritmetičke progresije, sa bilo koji broj? Veoma jednostavno! Volim ovo:

a n

To je ono što je n-ti član aritmetičke progresije. Slovo n sakriva sve brojeve članova odjednom: 1, 2, 3, 4, itd.

A šta nam takav zapis daje? Zamislite, umjesto broja napisali su slovo...

Ova notacija nam daje moćan alat za rad s aritmetičkom progresijom. Koristeći notaciju a n, možemo brzo pronaći bilo kojičlan bilo koji aritmetička progresija. I riješiti gomilu drugih problema s progresijom. Videćete dalje.

U formuli za n-ti član aritmetičke progresije:

a n = a 1 + (n-1)d

a 1- prvi član aritmetičke progresije;

n- članski broj.

Formula povezuje ključne parametre bilo koje progresije: a n ; a 1 ; d I n. Svi problemi progresije se vrte oko ovih parametara.

Formula n-tog pojma se također može koristiti za pisanje određene progresije. Na primjer, problem može reći da je progresija specificirana uvjetom:

a n = 5 + (n-1) 2.

Takav problem može biti ćorsokak... Nema ni serije ni razlike... Ali, upoređujući stanje sa formulom, lako je shvatiti da u ovoj progresiji a 1 =5 i d=2.

A može biti i gore!) Ako uzmemo isti uslov: a n = 5 + (n-1) 2, Da, otvorite zagrade i donesite slične? Dobijamo novu formulu:

a n = 3 + 2n.

Ovo Samo ne općenito, već za konkretan napredak. Ovdje vreba zamka. Neki ljudi misle da je prvi mandat trojka. Iako je u stvarnosti prvi rok pet... Malo niže ćemo raditi sa ovako izmijenjenom formulom.

U problemima progresije postoji još jedna notacija - a n+1. Ovo je, kao što ste pogodili, "n plus prvi" član progresije. Njegovo značenje je jednostavno i bezopasno.) Ovo je član progresije čiji je broj veći od broja n za jedan. Na primjer, ako u nekom problemu uzmemo a n onda peti mandat a n+1 biće šesti član. itd.

Najčešće oznaka a n+1 nalazi u formulama recidiva. Ne bojte se ove strašne riječi!) Ovo je samo način izražavanja člana aritmetičke progresije kroz prethodni. Recimo da nam je data aritmetička progresija u ovom obliku, koristeći rekurentnu formulu:

a n+1 = a n +3

a 2 = a 1 + 3 = 5+3 = 8

a 3 = a 2 + 3 = 8+3 = 11

Četvrti - kroz treći, peti - kroz četvrti, i tako dalje. Kako da odmah prebrojimo, recimo, dvadeseti rok? a 20? Ali nema šanse!) Dok ne saznamo 19. termin, 20. ne možemo računati. Ovo je fundamentalna razlika između rekurentne formule i formule n-og člana. Rekurentni radi samo kroz prethodni pojam, a formula n-tog člana je kroz prvo i dozvoljava odmah pronađite bilo kojeg člana po broju. Bez izračunavanja čitavog niza brojeva po redu.

U aritmetičkoj progresiji, lako je povratnu formulu pretvoriti u regularnu. Izbrojte par uzastopnih članova, izračunajte razliku d, pronađite, ako je potrebno, prvi pojam a 1, napišite formulu u njenom uobičajenom obliku i radite s njom. Takvi zadaci se često susreću u Državnoj akademiji nauka.

Primjena formule za n-ti član aritmetičke progresije.

Prvo, pogledajmo direktnu primjenu formule. Na kraju prethodne lekcije pojavio se problem:

Zadana je aritmetička progresija (a n). Pronađite 121 ako je a 1 =3 i d=1/6.

Ovaj problem se može riješiti bez ikakvih formula, jednostavno na osnovu značenja aritmetičke progresije. Dodajte i dodajte... Sat ili dva.)

A prema formuli, rješenje će trajati manje od minute. Možete ga odrediti na vrijeme.) Hajde da odlučimo.

Uvjeti pružaju sve podatke za korištenje formule: a 1 =3, d=1/6. Ostaje da shvatimo šta je jednako n. Nema problema! Moramo pronaći a 121. Pa pišemo:

Molimo obratite pažnju! Umjesto indeksa n pojavio se određeni broj: 121. Što je sasvim logično.) Zanima nas član aritmetičke progresije broj sto dvadeset jedan. Ovo će biti naše n. Ovo je smisao n= 121 zamenićemo dalje u formulu, u zagradama. Zamjenjujemo sve brojeve u formulu i izračunavamo:

a 121 = 3 + (121-1) 1/6 = 3+20 = 23

To je to. Jednako brzo se mogao naći petsto deseti pojam, a hiljadu treći, bilo koji. Stavili smo umjesto toga nželjeni broj u indeksu slova " a" i u zagradama, i računamo.

Dozvolite mi da vas podsjetim na poentu: ova formula vam omogućava da pronađete bilo koji termin aritmetičke progresije NJEGOVIM BROJEM" n" .

Hajde da riješimo problem na lukaviji način. Hajde da naletimo na sledeći problem:

Pronađite prvi član aritmetičke progresije (a n), ako je a 17 =-2; d=-0,5.

Ako budete imali poteškoća, reći ću vam prvi korak. Zapišite formulu za n-ti član aritmetičke progresije! Da da. Zapišite rukama, direktno u svoju svesku:

a n = a 1 + (n-1)d

I sada, gledajući slova formule, razumijemo koje podatke imamo, a šta nedostaje? Dostupan d=-0,5, ima sedamnaesti član... Je li to to? Ako mislite da je to to, onda nećete riješiti problem, da...

Još uvijek imamo broj n! U stanju a 17 =-2 skriveno dva parametra. Ovo je i vrijednost sedamnaestog člana (-2) i njegov broj (17). One. n=17. Ova „sitnica“ često prođe pored glave, a bez nje (bez „sitnice“, a ne glave!) problem se ne može rešiti. Mada... i bez glave.)

Sada možemo jednostavno glupo zamijeniti naše podatke u formulu:

a 17 = a 1 + (17-1)·(-0,5)

Oh da, a 17 znamo da je -2. U redu, zamenimo:

-2 = a 1 + (17-1)·(-0,5)

To je u osnovi sve. Ostaje da izrazimo prvi član aritmetičke progresije iz formule i izračunamo ga. Odgovor će biti: a 1 = 6.

Ova tehnika - zapisivanje formule i jednostavna zamjena poznatih podataka - je od velike pomoći u jednostavnim zadacima. Pa, naravno, morate znati izraziti varijablu iz formule, ali šta učiniti!? Bez ove veštine, matematika se možda uopšte neće izučavati...

Još jedna popularna zagonetka:

Naći razliku aritmetičke progresije (a n), ako je a 1 =2; a 15 =12.

Šta mi radimo? Iznenadit ćete se, pišemo formulu!)

a n = a 1 + (n-1)d

Hajde da razmotrimo šta znamo: a 1 =2; a 15 =12; i (posebno ću istaći!) n=15. Slobodno zamijenite ovo u formulu:

12=2 + (15-1)d

Radimo aritmetiku.)

12=2 + 14d

d=10/14 = 5/7

Ovo je tačan odgovor.

Dakle, zadaci za a n, a 1 I d odlučila. Ostaje samo naučiti kako pronaći broj:

Broj 99 je član aritmetičke progresije (a n), gdje je a 1 =12; d=3. Pronađite broj ovog člana.

Zamjenjujemo nam poznate količine u formulu n-tog člana:

a n = 12 + (n-1) 3

Na prvi pogled ovde postoje dve nepoznate količine: a n i n. Ali a n- ovo je neki član progresije sa brojem n...A mi poznajemo ovog člana progresije! To je 99. Ne znamo njegov broj. n, Dakle, ovaj broj je ono što trebate pronaći. Zamjenjujemo pojam progresije 99 u formulu:

99 = 12 + (n-1) 3

Izražavamo iz formule n, mi mislimo. Dobijamo odgovor: n=30.

A sada problem na istu temu, ali kreativniji):

Odredite da li je broj 117 član aritmetičke progresije (a n):

-3,6; -2,4; -1,2 ...

Hajde da ponovo napišemo formulu. Šta, nema parametara? Hm... Zašto su nam date oči?) Vidimo li prvi član progresije? Vidimo. Ovo je -3,6. Možete sa sigurnošću napisati: a 1 = -3,6. Razlika d Možete li reći iz serije? Lako je ako znate koja je razlika aritmetičke progresije:

d = -2,4 - (-3,6) = 1,2

Dakle, uradili smo najjednostavniju stvar. Ostaje da se pozabavimo nepoznatim brojem n i nerazumljivi broj 117. U prethodnom zadatku se barem znalo da je zadan termin progresije. Ali ovde ni ne znamo... Šta da radimo!? Pa šta da se radi, šta da se radi... Uključi se Kreativne vještine!)

Mi pretpostavimo da je 117, na kraju krajeva, član našeg napredovanja. Sa nepoznatim brojem n. I, baš kao u prethodnom zadatku, pokušajmo pronaći ovaj broj. One. pišemo formulu (da, da!)) i zamjenjujemo naše brojeve:

117 = -3,6 + (n-1) 1,2

Opet izražavamo iz formulen, računamo i dobijamo:

Ups! Broj se ispostavio fractional! Sto jedan i po. I razlomci u progresijama ne može biti. Kakav zaključak možemo izvući? Da! Broj 117 niječlan našeg napredovanja. To je negdje između sto prvog i sto drugog pojma. Ako je broj ispao prirodan, tj. je pozitivan cijeli broj, tada bi broj bio član progresije s pronađenim brojem. A u našem slučaju, odgovor na problem će biti: br.

Zadatak zasnovan na pravoj verziji GIA:

Aritmetička progresija je data uslovom:

a n = -4 + 6.8n

Pronađite prvi i deseti član progresije.

Ovdje je progresija postavljena na neobičan način. Nekakva formula... Dešava se.) Međutim, ova formula (kao što sam gore napisao) - također formula za n-ti član aritmetičke progresije! Ona takođe dozvoljava pronađite bilo kojeg člana progresije po njegovom broju.

Tražimo prvog člana. Onaj koji misli. da je prvi član minus četiri je fatalna greška!) Zato što je formula u zadatku modifikovana. Prvi član aritmetičke progresije u njemu skriveno. U redu je, sada ćemo to pronaći.)

Kao iu prethodnim problemima, vršimo zamjenu n=1 V ovu formulu:

a 1 = -4 + 6,8 1 = 2,8

Evo! Prvi član je 2,8, a ne -4!

Deseti pojam tražimo na isti način:

a 10 = -4 + 6,8 10 = 64

To je to.

A sada, za one koji su pročitali ove redove, obećani bonus.)

Pretpostavimo da ste u teškoj borbenoj situaciji Državnog ispita ili Jedinstvenog državnog ispita zaboravili korisnu formulu za n-ti član aritmetičke progresije. Sjećam se nečega, ali nekako nesigurno... Ili n tamo, ili n+1, ili n-1... Kako biti!?

Miran! Ovu formulu je lako izvesti. Nije baš stroga, ali svakako je dovoljna za samopouzdanje i pravu odluku!) Da biste zaključili, dovoljno je zapamtiti elementarno značenje aritmetičke progresije i imati par minuta vremena. Samo treba da nacrtate sliku. Radi jasnoće.

Nacrtajte brojevnu pravu i označite prvu na njoj. drugi, treći itd. članovi. I primjećujemo razliku d između članova. Volim ovo:

Gledamo sliku i mislimo: čemu je jednak drugi član? Sekunda jedan d:

a 2 =a 1 + 1 d

Šta je treći termin? Treće pojam je jednak prvom članu plus dva d.

a 3 =a 1 + 2 d

Da li shvatate? Nije uzalud neke riječi podebljano. U redu, još jedan korak).

Šta je četvrti mandat? Četvrto pojam je jednak prvom članu plus tri d.

a 4 =a 1 + 3 d

Vrijeme je da shvatimo da je broj praznina, tj. d, Uvijek jedan manji od broja člana kojeg tražite n. Odnosno na broj n, broj razmakaće n-1. Stoga će formula biti (bez varijacija!):

a n = a 1 + (n-1)d

Općenito, vizualne slike su od velike pomoći u rješavanju mnogih matematičkih problema. Nemojte zanemariti slike. Ali ako je teško nacrtati sliku, onda ... samo formula!) Osim toga, formula n-tog člana omogućava vam da povežete čitav moćni arsenal matematike na rješenje - jednadžbe, nejednačine, sisteme itd. Ne možete ubaciti sliku u jednačinu...

Zadaci za samostalno rješavanje.

Za zagrijavanje:

1. U aritmetičkoj progresiji (a n) a 2 =3; a 5 =5.1. Pronađite 3.

Savjet: prema slici, problem se može riješiti za 20 sekundi... Po formuli ispada teže. Ali za savladavanje formule, to je korisnije.) U odjeljku 555, ovaj problem je riješen korištenjem i slike i formule. Osjetite razliku!)

I ovo više nije zagrijavanje.)

2. U aritmetičkoj progresiji (a n) a 85 =19,1; a 236 =49, 3. Pronađite a 3 .

Šta, ne želite da nacrtate sliku?) Naravno! Bolje po formuli, da...

3. Aritmetička progresija je data uslovom:a 1 = -5,5; a n+1 = a n +0,5. Pronađite sto dvadeset peti član ove progresije.

U ovom zadatku, napredovanje je specificirano na ponavljajući način. Ali računajući do sto dvadeset i petog člana... Ne može svako da učini takav podvig.) Ali formula za n-ti član je u moći svakoga!

4. S obzirom na aritmetičku progresiju (a n):

-148; -143,8; -139,6; -135,4, .....

Pronađite broj najmanjeg pozitivnog člana progresije.

5. Prema uslovima zadatka 4, naći zbir najmanjeg pozitivnog i najvećeg negativnog člana progresije.

6. Proizvod petog i dvanaestog člana rastuće aritmetičke progresije jednak je -2,5, a zbir trećeg i jedanaestog člana jednak je nuli. Pronađite 14.

Nije najlakši zadatak, da...) Metoda "vrh prsta" ovdje neće raditi. Morat ćete napisati formule i riješiti jednačine.

Odgovori (u neredu):

3,7; 3,5; 2,2; 37; 2,7; 56,5

Desilo se? Lijepo je!)

Nije sve u redu? Dešava se. Inače, u posljednjem zadatku postoji jedna suptilna točka. Biće potrebna pažnja prilikom čitanja problema. I logika.

Rješenje svih ovih problema detaljno je razmotreno u Odjeljku 555. I element fantazije za četvrti, i suptilna tačka za šesti, i opći pristupi rješavanju bilo kojeg problema koji uključuje formulu n-og člana - sve je opisano. Predlažem.

Ako vam se sviđa ovaj sajt...

Inače, imam još par zanimljivih stranica za vas.)

Možete vježbati rješavanje primjera i saznati svoj nivo. Testiranje sa trenutnom verifikacijom. Učimo - sa interesovanjem!)

Možete se upoznati sa funkcijama i izvedenicama.

Vrsta lekcije: učenje novog gradiva.

Ciljevi lekcije:

  • proširivanje i produbljivanje razumijevanja učenika o problemima rješavanim aritmetičkom progresijom; organiziranje aktivnosti pretraživanja učenika pri izvođenju formule za zbir prvih n članova aritmetičke progresije;
  • razvijanje sposobnosti za samostalno sticanje novih znanja i korištenje već stečenih znanja za postizanje zadatog zadatka;
  • razvijanje želje i potrebe za uopštavanjem dobijenih činjenica, razvijanje samostalnosti.

Zadaci:

  • sumirati i sistematizovati postojeća znanja na temu „Aritmetička progresija“;
  • izvesti formule za izračunavanje sume prvih n članova aritmetičke progresije;
  • naučiti kako primijeniti dobijene formule pri rješavanju različitih zadataka;
  • skrenuti pažnju učenika na postupak nalaženja vrijednosti brojevnog izraza.

Oprema:

  • kartice sa zadacima za rad u grupama i parovima;
  • evaluacijski papir;
  • prezentacija"Aritmetička progresija."

I. Ažuriranje osnovnih znanja.

1. Samostalan rad u parovima.

1. opcija:

Definirajte aritmetičku progresiju. Zapišite formulu ponavljanja koja definira aritmetičku progresiju. Navedite primjer aritmetičke progresije i navedite njegovu razliku.

2. opcija:

Zapišite formulu za n-ti član aritmetičke progresije. Pronađite 100. član aritmetičke progresije ( a n}: 2, 5, 8 …
U ovom trenutku, dva učenika na poleđini ploče pripremaju odgovore na ista pitanja.
Učenici ocjenjuju rad svog partnera tako što ga provjeravaju na tabli. (Liste sa odgovorima se predaju.)

2. Trenutak igre.

Vježba 1.

Učitelju. Mislio sam na neku aritmetičku progresiju. Postavite mi samo dva pitanja kako biste nakon odgovora mogli brzo imenovati 7. član ove progresije. (1, 3, 5, 7, 9, 11, 13, 15…)

Pitanja studenata.

  1. Koji je šesti termin progresije i koja je razlika?
  2. Koji je osmi termin progresije i koja je razlika?

Ako više nema pitanja, onda ih nastavnik može stimulirati - "zabrana" na d (razliku), odnosno nije dozvoljeno pitati čemu je razlika jednaka. Možete postavljati pitanja: čemu je jednak 6. član progresije, a čemu 8. član progresije?

Zadatak 2.

Na tabli je napisano 20 brojeva: 1, 4, 7 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58.

Učitelj stoji leđima okrenut tabli. Učenici prozivaju broj, a nastavnik odmah proziva sam broj. Objasnite kako to mogu učiniti?

Nastavnik pamti formulu za n-ti rok a n = 3n – 2 i, zamjenom navedenih vrijednosti n, pronalazi odgovarajuće vrijednosti a n.

II. Postavljanje zadatka za učenje.

Predlažem da rešim drevni problem koji datira iz 2. milenijuma pre nove ere, koji je pronađen u egipatskim papirusima.

zadatak:“Neka vam se kaže: podijelite 10 mjera ječma na 10 ljudi, razlika između svakog čovjeka i njegovog susjeda je 1/8 mjere.”

  • Kako je ovaj problem povezan s aritmetičkom progresijom teme? (Svaka sljedeća osoba dobije 1/8 mjere više, što znači da je razlika d=1/8, 10 osoba, što znači n=10.)
  • Šta mislite da znači broj 10 mjera? (Zbroj svih uslova progresije.)
  • Šta još trebate znati da biste lako i jednostavno podijelili ječam prema uvjetima problema? (Prvi period napredovanja.)

Cilj lekcije– dobijanje zavisnosti zbira članova progresije od njihovog broja, prvog člana i razlike i provera da li je problem u antičko doba bio ispravno rešen.

Prije nego što zaključimo formulu, pogledajmo kako su stari Egipćani riješili problem.

I to su riješili na sljedeći način:

1) 10 mjera: 10 = 1 mjera – prosječan udio;
2) 1 takt ∙ = 2 takta – udvostručen prosjek dijeliti.
Udvostručeno prosjek udio je zbir udjela 5. i 6. lica.
3) 2 takta – 1/8 takta = 1 7/8 takta – duplo više od petog lica.
4) 1 7/8: 2 = 5/16 – dio petine; i tako dalje, možete pronaći udio svake prethodne i sljedeće osobe.

Dobijamo slijed:

III. Rješavanje problema.

1. Rad u grupama

Grupa I: Pronađite zbroj 20 uzastopnih prirodni brojevi: S 20 =(20+1)∙10 =210.

Uglavnom

II grupa: Pronađite zbir prirodnih brojeva od 1 do 100 (Legenda o malom Gausu).

S 100 = (1+100)∙50 = 5050

zaključak:

III grupa: Pronađite zbir prirodnih brojeva od 1 do 21.

Rješenje: 1+21=2+20=3+19=4+18…

zaključak:

IV grupa: Pronađite zbir prirodnih brojeva od 1 do 101.

zaključak:

Ova metoda rješavanja razmatranih problema naziva se “Gaussova metoda”.

2. Svaka grupa predstavlja rješenje problema na tabli.

3. Generalizacija predloženih rješenja za proizvoljnu aritmetičku progresiju:

a 1, a 2, a 3,…, a n-2, a n-1, a n.
S n =a 1 + a 2 + a 3 + a 4 +…+ a n-3 + a n-2 + a n-1 + a n.

Nađimo ovaj zbir koristeći slično rezonovanje:

4. Jesmo li riješili problem?(Da.)

IV. Primarno razumijevanje i primjena dobijenih formula pri rješavanju zadataka.

1. Provjera rješenja starog problema pomoću formule.

2. Primjena formule u rješavanju različitih problema.

3. Vježbe za razvijanje sposobnosti primjene formula pri rješavanju zadataka.

A) Ne. 613

Dato: ( a n) – aritmetička progresija;

(a n): 1, 2, 3, …, 1500

Pronađite: S 1500

Rješenje: , a 1 = 1 i 1500 = 1500,

B) Dato: ( a n) – aritmetička progresija;
(a n): 1, 2, 3, …
S n = 210

Pronađite: n
Rješenje:

V. Samostalan rad uz međusobnu provjeru.

Denis je počeo da radi kao kurir. Prvog mjeseca njegova plata iznosila je 200 rubalja, u svakom narednom mjesecu povećavala se za 30 rubalja. Koliko je ukupno zaradio za godinu dana?

Dato: ( a n) – aritmetička progresija;
a 1 = 200, d=30, n=12
Pronađite: S 12
Rješenje:

Odgovor: Denis je za godinu dobio 4380 rubalja.

VI. Instrukcije za domaći rad.

  1. Odjeljak 4.3 – naučite izvođenje formule.
  2. №№ 585, 623 .
  3. Napravite problem koji se može riješiti korištenjem formule za zbir prvih n članova aritmetičke progresije.

VII. Sumiranje lekcije.

1. Rezultat

2. Nastavite rečenice

  • Danas na času sam naučio...
  • Naučene formule...
  • Vjerujem da …

3. Možete li pronaći zbir brojeva od 1 do 500? Koju metodu ćete koristiti za rješavanje ovog problema?

Bibliografija.

1. Algebra, 9. razred. Tutorial za obrazovne institucije. Ed. G.V. Dorofeeva. M.: „Prosvetljenje“, 2009.

Dakle, hajde da sjednemo i počnemo pisati neke brojeve. Na primjer:
Možete napisati bilo koje brojeve, a može ih biti koliko god želite (u našem slučaju ih ima). Koliko god brojeva zapisali, uvijek možemo reći koji je prvi, koji drugi, i tako do posljednjeg, odnosno možemo ih numerirati. Ovo je primjer niza brojeva:

Redoslijed brojeva
Na primjer, za naš niz:

Dodijeljeni broj je specifičan za samo jedan broj u nizu. Drugim riječima, u nizu nema broja od tri sekunde. Drugi broj (kao i ti broj) je uvijek isti.
Broj sa brojem naziva se th član niza.

Obično cijeli niz nazivamo nekim slovom (na primjer), a svaki član ovog niza je isto slovo s indeksom jednakim broju ovog člana: .

u našem slučaju:

Recimo da imamo niz brojeva u kojem je razlika između susjednih brojeva ista i jednaka.
Na primjer:

itd.
Ovaj niz brojeva naziva se aritmetička progresija.
Termin "progresija" uveo je rimski autor Boetije još u 6. veku i shvaćen je u širem smislu kao beskonačan numerički niz. Naziv "aritmetika" prenet je iz teorije kontinuiranih proporcija, koju su proučavali stari Grci.

Ovo je niz brojeva čiji je svaki član jednak prethodnom dodanom istom broju. Ovaj broj se naziva razlika aritmetičke progresije i označava se.

Pokušajte odrediti koji nizovi brojeva su aritmetička progresija, a koji nisu:

a)
b)
c)
d)

Jasno? Uporedimo naše odgovore:
Is aritmetička progresija - b, c.
Nije aritmetička progresija - a, d.

Vratimo se na datu progresiju () i pokušamo pronaći vrijednost njenog th člana. Postoji dva način da ga nađete.

1. Metoda

Možemo dodati broj progresije na prethodnu vrijednost dok ne dođemo do th člana progresije. Dobro je da nemamo mnogo toga da rezimiramo - samo tri vrijednosti:

Dakle, th član opisane aritmetičke progresije je jednak.

2. Metoda

Šta ako trebamo pronaći vrijednost th člana progresije? Zbrajanje bi nam oduzelo više od jednog sata, a nije činjenica da ne bismo pogriješili prilikom sabiranja brojeva.
Naravno, matematičari su smislili način na koji nije potrebno dodati razliku aritmetičke progresije na prethodnu vrijednost. Pogledajte izbliza nacrtanu sliku... Sigurno ste već primijetili određeni uzorak, i to:

Na primjer, da vidimo od čega se sastoji vrijednost th člana ove aritmetičke progresije:


Drugim riječima:

Pokušajte sami pronaći vrijednost člana date aritmetičke progresije na ovaj način.

Jesi li izračunao? Uporedite svoje bilješke sa odgovorom:

Imajte na umu da ste dobili potpuno isti broj kao u prethodnoj metodi, kada smo uzastopno dodali članove aritmetičke progresije na prethodnu vrijednost.
Pokušajmo "depersonalizirati" ovu formulu - stavimo je u opći oblik i dobijemo:

Jednačina aritmetičke progresije.

Aritmetičke progresije mogu biti rastuće ili opadajuće.

Povećanje- progresije u kojima je svaka naredna vrijednost pojmova veća od prethodne.
Na primjer:

Silazno- progresije u kojima je svaka naredna vrijednost pojmova manja od prethodne.
Na primjer:

Izvedena formula se koristi u izračunavanju članova u rastućim i opadajućim terminima aritmetičke progresije.
Hajde da to proverimo u praksi.
Dobili smo aritmetičku progresiju koja se sastoji od sljedećih brojeva: Provjerimo koliki će biti th broj ove aritmetičke progresije ako koristimo našu formulu da ga izračunamo:


Od tada:

Stoga smo uvjereni da formula djeluje i u opadajućoj i u rastućoj aritmetičkoj progresiji.
Pokušajte sami pronaći th i th članove ove aritmetičke progresije.

Uporedimo rezultate:

Svojstvo aritmetičke progresije

Hajde da zakomplikujemo problem - izvešćemo svojstvo aritmetičke progresije.
Recimo da nam je dat sljedeći uslov:
- aritmetička progresija, pronađite vrijednost.
Lako, kažete i počinjete brojati prema formuli koju već znate:

Neka, ah, onda:

Apsolutno u pravu. Ispada da prvo pronađemo, pa ga dodamo prvom broju i dobijemo ono što tražimo. Ako je progresija predstavljena malim vrijednostima, onda u tome nema ništa komplikovano, ali šta ako su nam dati brojevi u uslovu? Slažem se, postoji mogućnost da napravite grešku u proračunima.
Sada razmislite o tome da li je moguće riješiti ovaj problem u jednom koraku koristeći bilo koju formulu? Naravno da, i to je ono što ćemo sada pokušati da iznesemo.

Označimo traženi član aritmetičke progresije kao, formula za njeno pronalaženje nam je poznata - to je ista formula koju smo izveli na početku:
, Zatim:

  • prethodni termin progresije je:
  • sljedeći termin progresije je:

Sumirajmo prethodni i naredni termin progresije:

Ispada da je zbir prethodnog i narednog člana progresije dvostruka vrijednost člana progresije koji se nalazi između njih. Drugim riječima, da biste pronašli vrijednost progresijskog člana sa poznatim prethodnim i uzastopnim vrijednostima, trebate ih sabrati i podijeliti.

Tako je, imamo isti broj. Osigurajmo materijal. Sami izračunajte vrijednost za napredak, to uopće nije teško.

Dobro urađeno! Znate skoro sve o napredovanju! Ostaje da saznamo samo jednu formulu, koju je, prema legendi, lako zaključio jedan od najvećih matematičara svih vremena, “kralj matematičara” - Karl Gauss...

Kada je Carl Gauss imao 9 godina, učiteljica, zauzeta provjeravanjem rada učenika u drugim razredima, zadala je sljedeći zadatak u razredu: “Prebrojite zbir svih prirodnih brojeva od do (prema drugim izvorima do) uključujući.” Zamislite učiteljevo iznenađenje kada je jedan od njegovih učenika (ovo je bio Karl Gauss) minut kasnije dao tačan odgovor na zadatak, dok je većina drznika iz razreda, nakon dugih proračuna, dobila pogrešan rezultat...

Mladi Carl Gauss primijetio je određeni obrazac koji i vi možete lako primijetiti.
Recimo da imamo aritmetičku progresiju koja se sastoji od --tih članova: Moramo pronaći zbir ovih članova aritmetičke progresije. Naravno, možemo ručno sabrati sve vrijednosti, ali šta ako zadatak zahtijeva pronalaženje zbira njegovih članova, kao što je Gauss tražio?

Hajde da opišemo napredak koji nam je dat. Pažljivo pogledajte označene brojeve i pokušajte s njima izvesti razne matematičke operacije.


Jeste li probali? Šta ste primetili? Tačno! Njihove sume su jednake


Sada mi recite koliko je ukupno takvih parova u progresiji koja nam je data? Naravno, tačno polovina svih brojeva, tj.
Na osnovu činjenice da je zbir dva člana aritmetičke progresije jednak, a slični parovi jednaki, dobijamo da je ukupan zbir jednak:
.
Dakle, formula za zbir prvih članova bilo koje aritmetičke progresije bit će:

U nekim problemima ne znamo th pojam, ali znamo razliku progresije. Pokušajte zamijeniti formulu th-og člana u formulu zbira.
šta si dobio?

Dobro urađeno! Vratimo se sada na problem koji je postavljen Carlu Gausu: izračunajte sami čemu je jednak zbir brojeva koji počinju od th i zbiru brojeva koji počinju od th.

Koliko si dobio?
Gauss je otkrio da je zbir članova jednak i zbir članova. Jesi li tako odlučio?

U stvari, formulu za zbir članova aritmetičke progresije dokazao je starogrčki naučnik Diofant još u 3. veku, i sve to vreme, duhoviti ljudi su u potpunosti koristili svojstva aritmetičke progresije.
Na primjer, zamislite Drevni Egipat i najveći građevinski poduhvat tog vremena - izgradnja piramide... Na slici je jedna njena strana.

Gdje je tu napredak, kažete? Pažljivo pogledajte i pronađite uzorak u broju pješčanih blokova u svakom redu zida piramide.


Zašto ne aritmetička progresija? Izračunajte koliko je blokova potrebno za izgradnju jednog zida ako su blok cigle postavljene u podnožju. Nadam se da nećete brojati dok prelazite prstom po monitoru, sjećate se zadnje formule i svega što smo rekli o aritmetičkoj progresiji?

U ovom slučaju, progresija izgleda ovako: .
Razlika aritmetičke progresije.
Broj članova aritmetičke progresije.
Zamijenimo naše podatke u posljednje formule (izračunajte broj blokova na 2 načina).

Metoda 1.

Metoda 2.

A sada možete izračunati na monitoru: usporedite dobivene vrijednosti s brojem blokova koji se nalaze u našoj piramidi. Jasno? Bravo, savladali ste zbir n-ih članova aritmetičke progresije.
Naravno, ne možete izgraditi piramidu od blokova u podnožju, ali od? Pokušajte izračunati koliko je pješčanih cigli potrebno za izgradnju zida s ovim uvjetom.
Jeste li uspjeli?
Tačan odgovor su blokovi:

Trening

Zadaci:

  1. Maša je u formi za ljeto. Svakim danom povećava broj čučnjeva. Koliko puta će Maša raditi čučnjeve u sedmici ako je radila čučnjeve na prvom treningu?
  2. Koliki je zbir svih neparnih brojeva sadržanih u.
  3. Prilikom skladištenja trupaca, drvosječe ih slažu na način da svaki gornji sloj sadrži jedan trupac manje od prethodnog. Koliko je trupaca u jednom zidu, ako je temelj zidanja trupac?

odgovori:

  1. Definirajmo parametre aritmetičke progresije. U ovom slučaju
    (sedmice = dani).

    odgovor: Za dvije sedmice, Maša bi trebala raditi čučnjeve jednom dnevno.

  2. Prvi neparni broj, zadnji broj.
    Razlika aritmetičke progresije.
    Broj neparnih brojeva u je pola, međutim, provjerimo ovu činjenicu koristeći formulu za pronalaženje th člana aritmetičke progresije:

    Brojevi sadrže neparne brojeve.
    Zamijenimo dostupne podatke u formulu:

    odgovor: Zbir svih neparnih brojeva sadržanih u je jednak.

  3. Prisjetimo se problema s piramidama. Za naš slučaj, a , pošto je svaki gornji sloj smanjen za jedan log, onda ukupno postoji gomila slojeva, tj.
    Zamijenimo podatke u formulu:

    odgovor: U zidovima su trupci.

Hajde da sumiramo

  1. - brojevni niz u kojem je razlika između susjednih brojeva ista i jednaka. Može se povećavati ili smanjivati.
  2. Pronalaženje formule Ti član aritmetičke progresije piše se formulom - , gdje je broj brojeva u progresiji.
  3. Svojstvo članova aritmetičke progresije- - gdje je broj brojeva u progresiji.
  4. Zbir članova aritmetičke progresije može se naći na dva načina:

    , gdje je broj vrijednosti.

ARITHMETIČKA PROGRESIJA. PROSJEČAN NIVO

Redoslijed brojeva

Hajde da sjednemo i počnemo pisati neke brojeve. Na primjer:

Možete napisati bilo koje brojeve, a može ih biti koliko god želite. Ali uvijek možemo reći koji je prvi, koji je drugi i tako dalje, odnosno možemo ih numerisati. Ovo je primjer niza brojeva.

Redoslijed brojeva je skup brojeva, od kojih se svakom može dodijeliti jedinstveni broj.

Drugim riječima, svaki broj može biti povezan s određenim prirodnim brojem, i to jedinstvenim. I nećemo dodijeliti ovaj broj nijednom drugom broju iz ovog skupa.

Broj sa brojem naziva se th član niza.

Obično cijeli niz nazivamo nekim slovom (na primjer), a svaki član ovog niza je isto slovo s indeksom jednakim broju ovog člana: .

Vrlo je zgodno ako se th član niza može specificirati nekom formulom. Na primjer, formula

postavlja redoslijed:

A formula je sljedeći niz:

Na primjer, aritmetička progresija je niz (prvi član je ovdje jednak, a razlika je). Ili (, razlika).

n-ti termin formula

Formulu nazivamo rekurentnom u kojoj, da biste saznali th pojam, morate znati prethodni ili nekoliko prethodnih:

Da bismo pronašli, na primjer, th član progresije koristeći ovu formulu, morat ćemo izračunati prethodnih devet. Na primjer, neka. onda:

Pa, da li je sada jasno koja je formula?

U svakom redu dodajemo, pomnoženo nekim brojem. Koji? Vrlo jednostavno: ovo je broj trenutnog člana minus:

Sada je mnogo zgodnije, zar ne? Provjeravamo:

Odlučite sami:

U aritmetičkoj progresiji pronađite formulu za n-ti član i pronađite stoti član.

Rješenje:

Prvi član je jednak. Koja je razlika? Evo šta:

(Zato se zove razlika jer je jednaka razlici uzastopnih članova progresije).

Dakle, formula:

Tada je stoti član jednak:

Koliki je zbir svih prirodnih brojeva od do?

Prema legendi, veliki matematičar Carl Gauss, kao 9-godišnji dječak, izračunao je ovu količinu za nekoliko minuta. Primijetio je da je zbir prvog i posljednjeg broja jednak, zbir drugog i pretposljednjeg broja isti, zbir trećeg i trećeg sa kraja isti, itd. Koliko ukupno ima takvih parova? Tako je, tačno polovina broja svih brojeva, tj. dakle,

Opća formula za zbir prvih članova bilo koje aritmetičke progresije bit će:

primjer:
Pronađite zbroj svih dvocifrenih višekratnika.

Rješenje:

Prvi takav broj je ovaj. Svaki naredni broj se dobija dodavanjem prethodnog broja. Dakle, brojevi koji nas zanimaju formiraju aritmetičku progresiju sa prvim članom i razlikom.

Formula th člana za ovu progresiju:

Koliko članova ima u progresiji ako svi moraju biti dvocifreni?

Vrlo jednostavno: .

Posljednji član progresije će biti jednak. Zatim suma:

Odgovor: .

Sada odlučite sami:

  1. Svakog dana sportista pretrči više metara nego prethodnog dana. Koliko će ukupno kilometara pretrčati u sedmici ako je prvog dana pretrčao km m?
  2. Biciklista svaki dan prijeđe više kilometara nego prethodnog dana. Prvog dana prešao je km. Koliko dana mu je potrebno da pređe kilometar? Koliko će kilometara preći tokom posljednjeg dana svog putovanja?
  3. Cijena frižidera u trgovini svake godine se smanjuje za isti iznos. Odredite za koliko se smanjila cijena frižidera svake godine ako je, stavljen na prodaju za rublje, šest godina kasnije prodat za rublje.

odgovori:

  1. Ovdje je najvažnije prepoznati aritmetičku progresiju i odrediti njene parametre. U ovom slučaju, (sedmice = dani). Morate odrediti zbir prvih članova ove progresije:
    .
    odgovor:
  2. Ovdje je dato: , mora se naći.
    Očigledno, morate koristiti istu formulu sume kao u prethodnom zadatku:
    .
    Zamijenite vrijednosti:

    Korijen očito ne odgovara, tako da je odgovor.
    Izračunajmo put koji smo prešli u posljednjem danu koristeći formulu th člana:
    (km).
    odgovor:

  3. Dato: . Pronađite: .
    Ne može biti jednostavnije:
    (rub).
    odgovor:

ARITHMETIČKA PROGRESIJA. UKRATKO O GLAVNIM STVARIMA

Ovo je niz brojeva u kojem je razlika između susjednih brojeva ista i jednaka.

Aritmetička progresija može biti rastuća () i opadajuća ().

Na primjer:

Formula za pronalaženje n-og člana aritmetičke progresije

zapisuje se po formuli, gdje je broj brojeva u progresiji.

Svojstvo članova aritmetičke progresije

Omogućava vam da lako pronađete pojam progresije ako su poznati njegovi susjedni pojmovi - gdje je broj brojeva u progresiji.

Zbir članova aritmetičke progresije

Postoje dva načina da pronađete iznos:

Gdje je broj vrijednosti.

Gdje je broj vrijednosti.

PREOSTALE 2/3 ČLANKA DOSTUPNE SAMO YOUCLEVER STUDENTIMA!

Postanite YouClever student,

Pripremite se za Jedinstveni državni ispit ili Jedinstveni državni ispit iz matematike po cijeni “šoljica kafe mjesečno”,

I također dobijte neograničen pristup udžbeniku "YouClever", Pripremnom programu (radnoj svesci) "100gia", neograničeno suđenje Jedinstveni državni ispit i OGE, 6000 problema sa analizom rješenja i drugih servisa YouClever i 100gia.

Podijelite sa prijateljima ili sačuvajte za sebe:

Učitavanje...