Rules for calculating derivatives. How to find the derivative? Examples of solutions What is the derivative 2?

Derivation of the formula for the derivative of a power function (x to the power of a). Derivatives from roots of x are considered. Formula for the derivative of a power function higher order. Examples of calculating derivatives.

Content

See also: Power function and roots, formulas and graph
Power Function Graphs

Basic formulas

The derivative of x to the power of a is equal to a times x to the power of a minus one:
(1) .

The derivative of the nth root of x to the mth power is:
(2) .

Derivation of the formula for the derivative of a power function

Case x > 0

Consider a power function of the variable x with exponent a:
(3) .
Here a is an arbitrary real number. Let's first consider the case.

To find the derivative of function (3), we use the properties of a power function and transform it to the following form:
.

Now we find the derivative using:
;
.
Here .

Formula (1) has been proven.

Derivation of the formula for the derivative of a root of degree n of x to the degree of m

Now consider a function that is the root of the following form:
(4) .

To find the derivative, we transform the root to a power function:
.
Comparing with formula (3) we see that
.
Then
.

Using formula (1) we find the derivative:
(1) ;
;
(2) .

In practice, there is no need to memorize formula (2). It is much more convenient to first transform the roots to power functions, and then find their derivatives using formula (1) (see examples at the end of the page).

Case x = 0

If , then the power function is defined for the value of the variable x = 0 . Let's find the derivative of function (3) at x = 0 . To do this, we use the definition of a derivative:
.

Let's substitute x = 0 :
.
In this case, by derivative we mean the right-hand limit for which .

So we found:
.
From this it is clear that for , .
At , .
At , .
This result is also obtained from formula (1):
(1) .
Therefore, formula (1) is also valid for x = 0 .

Case x< 0

Consider function (3) again:
(3) .
For certain values ​​of the constant a, it is also defined for negative values ​​of the variable x. Namely, let a be a rational number. Then it can be represented as an irreducible fraction:
,
where m and n are integers without common divisor.

If n is odd, then the power function is also defined for negative values ​​of the variable x. For example, when n = 3 and m = 1 we have the cube root of x:
.
It is also defined for negative values ​​of the variable x.

Let us find the derivative of the power function (3) for and for rational values ​​of the constant a for which it is defined. To do this, let's represent x in the following form:
.
Then ,
.
We find the derivative by placing the constant outside the sign of the derivative and applying the rule for differentiating a complex function:

.
Here . But
.
Since then
.
Then
.
That is, formula (1) is also valid for:
(1) .

Higher order derivatives

Now let's find higher order derivatives of the power function
(3) .
We have already found the first order derivative:
.

Taking the constant a outside the sign of the derivative, we find the second-order derivative:
.
Similarly, we find derivatives of the third and fourth orders:
;

.

From this it is clear that derivative of arbitrary nth order has the following form:
.

notice, that if a is natural number , then the nth derivative is constant:
.
Then all subsequent derivatives are equal to zero:
,
at .

Examples of calculating derivatives

Example

Find the derivative of the function:
.

Let's convert roots to powers:
;
.
Then the original function takes the form:
.

Finding derivatives of powers:
;
.
The derivative of the constant is zero:
.

Very easy to remember.

Well, let’s not go far, let’s immediately consider the inverse function. Which function is the inverse of exponential function? Logarithm:

In our case, the base is the number:

Such a logarithm (that is, a logarithm with a base) is called “natural”, and we use a special notation for it: we write instead.

What is it equal to? Of course, .

The derivative of the natural logarithm is also very simple:

Examples:

  1. Find the derivative of the function.
  2. What is the derivative of the function?

Answers: The exponential and natural logarithm are uniquely simple functions from a derivative perspective. Exponential and logarithmic functions with any other base will have a different derivative, which we will analyze later, after we go through the rules of differentiation.

Rules of differentiation

Rules of what? Again a new term, again?!...

Differentiation is the process of finding the derivative.

That's all. What else can you call this process in one word? Not derivative... Mathematicians call the differential the same increment of a function at. This term comes from the Latin differentia - difference. Here.

When deriving all these rules, we will use two functions, for example, and. We will also need formulas for their increments:

There are 5 rules in total.

The constant is taken out of the derivative sign.

If - some constant number (constant), then.

Obviously, this rule also works for the difference: .

Let's prove it. Let it be, or simpler.

Examples.

Find the derivatives of the functions:

  1. at a point;
  2. at a point;
  3. at a point;
  4. at the point.

Solutions:

  1. (the derivative is the same at all points, since it is a linear function, remember?);

Derivative of the product

Everything is similar here: let’s introduce a new function and find its increment:

Derivative:

Examples:

  1. Find the derivatives of the functions and;
  2. Find the derivative of the function at a point.

Solutions:

Derivative of an exponential function

Now your knowledge is enough to learn how to find the derivative of any exponential function, and not just exponents (have you forgotten what that is yet?).

So, where is some number.

We already know the derivative of the function, so let's try to reduce our function to a new base:

To do this, we will use a simple rule: . Then:

Well, it worked. Now try to find the derivative, and don't forget that this function is complex.

Happened?

Here, check yourself:

The formula turned out to be very similar to the derivative of an exponent: as it was, it remains the same, only a factor appeared, which is just a number, but not a variable.

Examples:
Find the derivatives of the functions:

Answers:

This is just a number that cannot be calculated without a calculator, that is, it cannot be written down in any more in simple form. Therefore, we leave it in this form in the answer.

    Note that here is the quotient of two functions, so we apply the corresponding differentiation rule:

    In this example, the product of two functions:

Derivative of a logarithmic function

It’s similar here: you already know the derivative of the natural logarithm:

Therefore, to find an arbitrary logarithm with a different base, for example:

We need to reduce this logarithm to the base. How do you change the base of a logarithm? I hope you remember this formula:

Only now we will write instead:

The denominator is simply a constant (a constant number, without a variable). The derivative is obtained very simply:

Derivatives of exponential and logarithmic functions are almost never found in the Unified State Examination, but it will not be superfluous to know them.

Derivative of a complex function.

What is a "complex function"? No, this is not a logarithm, and not an arctangent. These functions can be difficult to understand (although if you find the logarithm difficult, read the topic “Logarithms” and you will be fine), but from a mathematical point of view, the word “complex” does not mean “difficult”.

Imagine a small conveyor belt: two people are sitting and doing some actions with some objects. For example, the first one wraps a chocolate bar in a wrapper, and the second one ties it with a ribbon. The result is a composite object: a chocolate bar wrapped and tied with a ribbon. To eat a chocolate bar, you need to do the reverse steps in reverse order.

Let's create a similar mathematical pipeline: first we will find the cosine of a number, and then square the resulting number. So, we are given a number (chocolate), I find its cosine (wrapper), and then you square what I got (tie it with a ribbon). What happened? Function. This is an example complex function: when, to find its value, we perform the first action directly with the variable, and then a second action with what resulted from the first.

In other words, a complex function is a function whose argument is another function: .

For our example, .

We can easily do the same steps in reverse order: first you square it, and I then look for the cosine of the resulting number: . It’s easy to guess that the result will almost always be different. An important feature of complex functions: when the order of actions changes, the function changes.

Second example: (same thing). .

The action we do last will be called "external" function, and the action performed first - accordingly "internal" function(these are informal names, I use them only to explain the material in simple language).

Try to determine for yourself which function is external and which internal:

Answers: Separating inner and outer functions is very similar to changing variables: for example, in a function

  1. What action will we perform first? First, let's calculate the sine, and only then cube it. This means that it is an internal function, but an external one.
    And the original function is their composition: .
  2. Internal: ; external: .
    Examination: .
  3. Internal: ; external: .
    Examination: .
  4. Internal: ; external: .
    Examination: .
  5. Internal: ; external: .
    Examination: .

We change variables and get a function.

Well, now we will extract our chocolate bar and look for the derivative. The procedure is always reversed: first we look for the derivative of the outer function, then we multiply the result by the derivative of the inner function. In relation to the original example, it looks like this:

Another example:

So, let's finally formulate the official rule:

Algorithm for finding the derivative of a complex function:

It seems simple, right?

Let's check with examples:

Solutions:

1) Internal: ;

External: ;

2) Internal: ;

(Just don’t try to cut it by now! Nothing comes out from under the cosine, remember?)

3) Internal: ;

External: ;

It is immediately clear that this is a three-level complex function: after all, this is already a complex function in itself, and we also extract the root from it, that is, we perform the third action (put the chocolate in a wrapper and with a ribbon in the briefcase). But there is no reason to be afraid: we will still “unpack” this function in the same order as usual: from the end.

That is, first we differentiate the root, then the cosine, and only then the expression in brackets. And then we multiply it all.

In such cases, it is convenient to number the actions. That is, let's imagine what we know. In what order will we perform actions to calculate the value of this expression? Let's look at an example:

The later the action is performed, the more “external” the corresponding function will be. The sequence of actions is the same as before:

Here the nesting is generally 4-level. Let's determine the course of action.

1. Radical expression. .

2. Root. .

3. Sine. .

4. Square. .

5. Putting it all together:

DERIVATIVE. BRIEFLY ABOUT THE MAIN THINGS

Derivative of a function- the ratio of the increment of the function to the increment of the argument for an infinitesimal increment of the argument:

Basic derivatives:

Rules of differentiation:

The constant is taken out of the derivative sign:

Derivative of the sum:

Derivative of the product:

Derivative of the quotient:

Derivative of a complex function:

Algorithm for finding the derivative of a complex function:

  1. We define the “internal” function and find its derivative.
  2. We define the “external” function and find its derivative.
  3. We multiply the results of the first and second points.

Derivative calculations are often found in Unified State Exam assignments. This page contains a list of formulas for finding derivatives.

Rules of differentiation

  1. (k⋅ f(x))′=k⋅ f ′(x).
  2. (f(x)+g(x))′=f′(x)+g′(x).
  3. (f(x)⋅ g(x))′=f′(x)⋅ g(x)+f(x)⋅ g′(x).
  4. Derivative of a complex function. If y=F(u), and u=u(x), then the function y=f(x)=F(u(x)) is called a complex function of x. Equal to y′(x)=Fu′⋅ ux′.
  5. Derivative of an implicit function. The function y=f(x) is called an implicit function defined by the relation F(x,y)=0 if F(x,f(x))≡0.
  6. Derivative of the inverse function. If g(f(x))=x, then the function g(x) is called inverse function for the function y=f(x).
  7. Derivative of a parametrically defined function. Let x and y be specified as functions of the variable t: x=x(t), y=y(t). They say that y=y(x) parametrically given function on the interval x∈ (a;b), if on this interval the equation x=x(t) can be expressed as t=t(x) and the function y=y(t(x))=y(x) can be defined.
  8. Derivative of a power-exponential function. Found by taking logarithms to the base of the natural logarithm.
We advise you to save the link, as this table may be needed many times.

Derivative

Calculation of the derivative of mathematical function(differentiation) is a very common problem when solving higher mathematics. For simple (elementary) mathematical functions, this is a fairly simple matter, since tables of derivatives for elementary functions. However, finding the derivative of a complex mathematical function is not a trivial task and often requires significant effort and time.

Find derivative online

Our online service allows you to get rid of pointless long calculations and find derivative online in one moment. Moreover, using our service located on the website www.site, you can calculate online derivative both from an elementary function and from a very complex one that does not have an analytical solution. The main advantages of our site compared to others are: 1) there are no strict requirements for the method of entering a mathematical function for calculating the derivative (for example, when entering the sine x function, you can enter it as sin x or sin(x) or sin[x], etc. d.); 2) online derivative calculation occurs instantly in the mode online and absolutely for free; 3) we allow you to find the derivative of a function any order, changing the order of the derivative is very easy and understandable; 4) we allow you to find the derivative of almost any mathematical function online, even very complex ones that cannot be solved by other services. The response provided is always accurate and cannot contain errors.

Using our server will allow you to 1) calculate the derivative online for you, eliminating time-consuming and tedious calculations during which you could make an error or typo; 2) if you calculate the derivative of a mathematical function yourself, then we provide you with the opportunity to compare the result obtained with the calculations of our service and make sure that the solution is correct or find an error that has crept in; 3) use our service instead of using tables of derivatives of simple functions, where it often takes time to find the desired function.

All you need to do is find derivative online- is to use our service on

The operation of finding the derivative is called differentiation.

As a result of solving problems of finding derivatives of the simplest (and not very simple) functions by defining the derivative as the limit of the ratio of the increment to the increment of the argument, a table of derivatives appeared and exactly certain rules differentiation. The first to work in the field of finding derivatives were Isaac Newton (1643-1727) and Gottfried Wilhelm Leibniz (1646-1716).

Therefore, in our time, to find the derivative of any function, you do not need to calculate the above-mentioned limit of the ratio of the increment of the function to the increment of the argument, but you only need to use the table of derivatives and the rules of differentiation. The following algorithm is suitable for finding the derivative.

To find the derivative, you need an expression under the prime sign break down simple functions into components and determine what actions (product, sum, quotient) these functions are related. Next, we find the derivatives of elementary functions in the table of derivatives, and the formulas for the derivatives of the product, sum and quotient - in the rules of differentiation. The derivative table and differentiation rules are given after the first two examples.

Example 1. Find the derivative of a function

Solution. From the rules of differentiation we find out that the derivative of a sum of functions is the sum of derivatives of functions, i.e.

From the table of derivatives we find out that the derivative of "x" is equal to one, and the derivative of sine is equal to cosine. We substitute these values ​​into the sum of derivatives and find the derivative required by the condition of the problem:

Example 2. Find the derivative of a function

Solution. We differentiate as a derivative of a sum in which the second term has a constant factor; it can be taken out of the sign of the derivative:

If questions still arise about where something comes from, they are usually cleared up after familiarizing yourself with the table of derivatives and the simplest rules of differentiation. We are moving on to them right now.

Table of derivatives of simple functions

1. Derivative of a constant (number). Any number (1, 2, 5, 200...) that is in the function expression. Always equal to zero. This is very important to remember, as it is required very often
2. Derivative of the independent variable. Most often "X". Always equal to one. This is also important to remember for a long time
3. Derivative of degree. When solving problems, you need to convert non-square roots into powers.
4. Derivative of a variable to the power -1
5. Derivative square root
6. Derivative of sine
7. Derivative of cosine
8. Derivative of tangent
9. Derivative of cotangent
10. Derivative of arcsine
11. Derivative of arccosine
12. Derivative of arctangent
13. Derivative of arc cotangent
14. Derivative of the natural logarithm
15. Derivative of a logarithmic function
16. Derivative of the exponent
17. Derivative of an exponential function

Rules of differentiation

1. Derivative of a sum or difference
2. Derivative of the product
2a. Derivative of an expression multiplied by a constant factor
3. Derivative of the quotient
4. Derivative of a complex function

Rule 1.If the functions

are differentiable at some point, then the functions are differentiable at the same point

and

those. the derivative of an algebraic sum of functions is equal to the algebraic sum of the derivatives of these functions.

Consequence. If two differentiable functions differ by a constant term, then their derivatives are equal, i.e.

Rule 2.If the functions

are differentiable at some point, then their product is differentiable at the same point

and

those. The derivative of the product of two functions is equal to the sum of the products of each of these functions and the derivative of the other.

Corollary 1. The constant factor can be taken out of the sign of the derivative:

Corollary 2. The derivative of the product of several differentiable functions is equal to the sum of the products of the derivative of each factor and all the others.

For example, for three multipliers:

Rule 3.If the functions

differentiable at some point And , then at this point their quotient is also differentiableu/v , and

those. the derivative of the quotient of two functions is equal to a fraction, the numerator of which is the difference between the products of the denominator and the derivative of the numerator and the numerator and the derivative of the denominator, and the denominator is the square of the former numerator.

Where to look for things on other pages

When finding the derivative of a product and a quotient in real problems, it is always necessary to apply several differentiation rules at once, so there are more examples on these derivatives in the article"Derivative of the product and quotient of functions".

Comment. You should not confuse a constant (that is, a number) as a term in a sum and as a constant factor! In the case of a term, its derivative is equal to zero, and in the case of a constant factor, it is taken out of the sign of the derivatives. This typical mistake, which occurs on initial stage studying derivatives, but as they solve several one- and two-part examples, the average student no longer makes this mistake.

And if, when differentiating a product or quotient, you have a term u"v, in which u- a number, for example, 2 or 5, that is, a constant, then the derivative of this number will be equal to zero and, therefore, the entire term will be equal to zero (this case is discussed in example 10).

Another common mistake is mechanically solving the derivative of a complex function as the derivative of a simple function. That's why derivative of a complex function a separate article is devoted. But first we will learn to find derivatives of simple functions.

Along the way, you can’t do without transforming expressions. To do this, you may need to open the manual in new windows. Actions with powers and roots And Operations with fractions .

If you are looking for solutions to derivatives of fractions with powers and roots, that is, when the function looks like , then follow the lesson “Derivative of sums of fractions with powers and roots.”

If you have a task like , then you will take the lesson “Derivatives of simple trigonometric functions”.

Step-by-step examples - how to find the derivative

Example 3. Find the derivative of a function

Solution. We define the parts of the function expression: the entire expression represents a product, and its factors are sums, in the second of which one of the terms contains a constant factor. We apply the product differentiation rule: the derivative of the product of two functions is equal to the sum of the products of each of these functions by the derivative of the other:

Next, we apply the rule of differentiation of the sum: the derivative of the algebraic sum of functions is equal to the algebraic sum of the derivatives of these functions. In our case, in each sum the second term has a minus sign. In each sum we see both an independent variable, the derivative of which is equal to one, and a constant (number), the derivative of which is equal to zero. So, “X” turns into one, and minus 5 turns into zero. In the second expression, "x" is multiplied by 2, so we multiply two by the same unit as the derivative of "x". We obtain the following derivative values:

We substitute the found derivatives into the sum of products and obtain the derivative of the entire function required by the condition of the problem:

And you can check the solution to the derivative problem on.

Example 4. Find the derivative of a function

Solution. We are required to find the derivative of the quotient. We apply the formula for differentiating the quotient: the derivative of the quotient of two functions is equal to a fraction, the numerator of which is the difference between the products of the denominator and the derivative of the numerator and the numerator and the derivative of the denominator, and the denominator is the square of the former numerator. We get:

We have already found the derivative of the factors in the numerator in example 2. Let us also not forget that the product, which is the second factor in the numerator in the current example, is taken with a minus sign:

If you are looking for solutions to problems in which you need to find the derivative of a function, where there is a continuous pile of roots and powers, such as, for example, , then welcome to class "Derivative of sums of fractions with powers and roots" .

If you need to learn more about the derivatives of sines, cosines, tangents and other trigonometric functions, that is, when the function looks like , then a lesson for you "Derivatives of simple trigonometric functions" .

Example 5. Find the derivative of a function

Solution. In this function we see a product, one of the factors of which is the square root of the independent variable, the derivative of which we familiarized ourselves with in the table of derivatives. Using the rule for differentiating the product and the tabular value of the derivative of the square root, we obtain:

You can check the solution to the derivative problem at online derivatives calculator .

Example 6. Find the derivative of a function

Solution. In this function we see a quotient whose dividend is the square root of the independent variable. Using the rule of differentiation of quotients, which we repeated and applied in example 4, and the tabulated value of the derivative of the square root, we obtain:

To get rid of a fraction in the numerator, multiply the numerator and denominator by .

Share with friends or save for yourself:

Loading...