Как решать уравнения способом подстановки. Решение систем уравнений. Простые и сложные методы решения систем уравнений


2. Метод алгебраического сложения.
3. Метод введения нового переменного (метод замены переменной).

Определение: Системой уравнений называются несколько уравнений от одной или нескольких переменных, которые должны выполняться одновременно, т.е. при одинаковых значениях переменных для всех уравнений. Уравнения в системе объединяются знаком системы – фигурной скобкой.
Пример 1:

— система двух уравнений с двумя переменными x и y .
Решением системы являются корни . При подстановке этих значений уравнения превращаются в верные тождества:

Решение систем линейных уравнений.

Самым распространенным методом решения системы является метод подстановки.

Метод подстановки.

Метод подстановки для решения систем уравнений заключается в том, чтобы из одного уравнения системы выразить какую-либо переменную через другие, и подставить это выражение в остальные уравнения системы вместо выраженной переменной.
Пример 2:
Решить систему уравнений:

Решение:
Дана система уравнений и ее требуется решить методом подстановки.
Выразим переменную y из второго уравнения системы.
Замечание: «Выразить переменную» означает преобразовать равенство так, чтобы эта переменная осталась слева от знака равенства с коэффициентом 1, а все остальные слагаемые перешли в правую часть равенства.
Второе уравнение системы:

Оставим слева только y :

И подставим (вот оттуда то и идет название метода) в первое уравнение вместо у выражение, которому оно равно, т.е. .
Первое уравнение:

Подставим :

Решим это банальное квадратное уравнение. Для тех, кто забыл, как это делается, есть статья Решение квадратных уравнений. .

Итак, значения переменной x найдены.
Подставим эти значения в выражение для переменной y . Здесь получилось два значения x , т.е. для каждого из них следует находить значение y .
1) Пусть
Подставляем в выражение .

2) Пусть
Подставляем в выражение .

Все можно составлять ответ:
Замечание: Ответ в этом случае следует записывать попарно, чтоб не перепутать, какое значение переменной y соответствует какому значению переменной x.
Ответ:
Замечание: В примере 1 как решение системы указана только одна пара, т.е. эта пара является решением системы, но не полным. Потому, как решить уравнение или систему значит указать решение и показать, что других решений нет. А тут еще одна пара.

Оформим решение этой системы по-школьному:

Замечание: Знак «» значит «равносильно», т.е. следующая система или выражение равносильно предыдущей.


Разберем два вида решения систем уравнения:

1. Решение системы методом подстановки.
2. Решение системы методом почленного сложения (вычитания) уравнений системы.

Для того чтобы решить систему уравнений методом подстановки нужно следовать простому алгоритму:
1. Выражаем. Из любого уравнения выражаем одну переменную.
2. Подставляем. Подставляем в другое уравнение вместо выраженной переменной, полученное значение.
3. Решаем полученное уравнение с одной переменной. Находим решение системы.

Чтобы решить систему методом почленного сложения (вычитания) нужно:
1.Выбрать переменную у которой будем делать одинаковые коэффициенты.
2.Складываем или вычитаем уравнения, в итоге получаем уравнение с одной переменной.
3. Решаем полученное линейное уравнение . Находим решение системы.

Решением системы являются точки пересечения графиков функции.

Рассмотрим подробно на примерах решение систем.

Пример №1:

Решим методом подстановки

Решение системы уравнений методом подстановки

2x+5y=1 (1 уравнение)
x-10y=3 (2 уравнение)

1. Выражаем
Видно что во втором уравнении имеется переменная x с коэффициентом 1,отсюда получается что легче всего выразить переменную x из второго уравнения.
x=3+10y

2.После того как выразили подставляем в первое уравнение 3+10y вместо переменной x.
2(3+10y)+5y=1

3.Решаем полученное уравнение с одной переменной.
2(3+10y)+5y=1 (раскрываем скобки)
6+20y+5y=1
25y=1-6
25y=-5 |: (25)
y=-5:25
y=-0,2

Решением системы уравнения является точки пересечений графиков, следовательно нам нужно найти x и у, потому что точка пересечения состоит их x и y.Найдем x, в первом пункте где мы выражали туда подставляем y.
x=3+10y
x=3+10*(-0,2)=1

Точки принято записывать на первом месте пишем переменную x, а на втором переменную y.
Ответ: (1; -0,2)

Пример №2:

Решим методом почленного сложения (вычитания).

Решение системы уравнений методом сложения

3x-2y=1 (1 уравнение)
2x-3y=-10 (2 уравнение)

1.Выбираем переменную, допустим, выбираем x. В первом уравнении у переменной x коэффициент 3, во втором 2. Нужно сделать коэффициенты одинаковыми, для этого мы имеем право домножить уравнения или поделить на любое число. Первое уравнение домножаем на 2, а второе на 3 и получим общий коэффициент 6.

3x-2y=1 |*2
6x-4y=2

2x-3y=-10 |*3
6x-9y=-30

2.Из первого уравнения вычтем второе, чтобы избавиться от переменной x.Решаем линейное уравнение.
__6x-4y=2

5y=32 | :5
y=6,4

3.Находим x. Подставляем в любое из уравнений найденный y, допустим в первое уравнение.
3x-2y=1
3x-2*6,4=1
3x-12,8=1
3x=1+12,8
3x=13,8 |:3
x=4,6

Точкой пересечения будет x=4,6; y=6,4
Ответ: (4,6; 6,4)

Хочешь готовиться к экзаменам бесплатно? Репетитор онлайн бесплатно . Без шуток.

В данном случае удобно из второго уравнения системы выразить x через y и подставить полученное выражение вместо x в первое уравнение:

Первое уравнение — уравнение с одной переменной y. Решаем его:

5(7-3y)-2y = -16

Полученное значение y подставляем в выражение для x:

Ответ: (-2; 3).

В данной системе проще из первого уравнения выразить y через x и подставить полученное выражение вместо y во второе уравнение:

Второе уравнение — уравнение с одной переменной x. Решим его:

3x-4(-1,5-3,5x)=23

В выражение для y вместо x подставляем x=1 и находим y:

Ответ: (1; -5).

Здесь удобнее из второго уравнения выразить y через x (поскольку делить на 10 проще, чем на 4, -9 или 3):

Решаем первое уравнение:

4x-9(1,6-0,3x)= -1

4x-14,4+2,7x= -1

Подставляем x=2 и находим y:

Ответ: (2; 1).

Прежде чем применить метод подстановки, эту систему следует упростить. Обе части первого уравнения можно умножить на наименьший общий знаменатель, во втором уравнении раскрываем скобки и приводим подобные слагаемые:

Получили систему линейных уравнений с двумя переменными. Теперь применим подстановку. Удобно из второго уравнения выразить a через b:

Решаем первое уравнение системы:

3(21,5 + 2,5b) — 7b = 63

Осталось найти значение a:

Согласно правилам оформления, ответ записываем в круглых скобках через точку с запятой в алфавитном порядке.

Ответ: (14; -3).

Выражая одну переменную через другую, иногда удобнее оставлять её с некоторым коэффициентом.

Обычно уравнения системы записывают в столбик одно под другим и объединяют фигурной скобкой

Система уравнений такого вида, где a, b, c - числа, а x, y - переменные, называется системой линейных уравнений .

При решении системы уравнений используют свойства, справедливые для решения уравнений .

Решение системы линейных уравнений способом подстановки

Рассмотрим пример

1) Выразить в одном из уравнений переменную. Например, выразим y в первом уравнении, получим систему:

2) Подставляем во второе уравнение системы вместо y выражение 3х-7 :

3) Решаем полученное второе уравнение:

4) Полученное решение подставляем в первое уравнение системы:

Система уравнений имеет единственное решение: пару чисел x=1, y=-4 . Ответ: (1; -4) , записывается в скобках, на первой позиции значение x , на второй - y .

Решение системы линейных уравнений способом сложения

Решим систему уравнений из предыдущего примера методом сложения.

1) Преобразовать систему таким образом, чтобы коэффициенты при одной из переменных стали противоположными . Умножим первое уравнение системы на "3".

2) Складываем почленно уравнения системы. Второе уравнение системы (любое) переписываем без изменений.

3) Полученное решение подставляем в первое уравнение системы:

Решение системы линейных уравнений графическим способом

Графическое решение системы уравнений с двумя переменными сводится к отыскиванию координат общих точек графиков уравнений.

Графиком линейной функции является прямая. Две прямые на плоскости могут пересекаться в одной точке, быть параллельными или совпадать. Соответственно система уравнений может: а) иметь единственное решение; б) не иметь решений; в) иметь бесконечное множество решений.

2) Решением системы уравнений является точка (если уравнения являются линейными) пересечения графиков.

Графическое решение системы

Метод введения новых переменных

Замена переменных может привести к решению более простой системы уравнений, чем исходная.

Рассмотрим решение системы

Введем замену , тогда

Переходим к первоначальным переменным


Особые случаи

Не решая системы линейных уравнений, можно определить число ее решений по коэффициентам при соответствующих переменных.

Системой линейных уравнений с двумя неизвестными - это два или несколько линейных уравнений, для которых необходимо найти все их общие решения. Мы будем рассматривать системы из двух линейных уравнений с двумя неизвестными. Общий вид системы из двух линейных уравнений с двумя неизвестными представлен на рисунке ниже:

{ a1*x + b1*y = c1,
{ a2*x + b2*y = c2

Здесь х и у неизвестные переменные, a1,a2,b1,b2,с1,с2 - некоторые вещественные числа. Решением системы двух линейных уравнений с двумя неизвестными называют пару чисел (x,y) такую, что если подставить эти числа в уравнения системы, то каждое из уравнений системы обращается в верное равенство. Рассмотри один из способов решения системы линейных уравнений, а именно способ подстановки.

Алгоритм решения способом подстановки

Алгоритм решения системы линейных уравнений способом подстановки:

1. Выбрать одно уравнение (лучше выбирать то, где числа меньше) и выразить из него одну переменную через другую, например, x через y. (можно и y через x).

2. Полученное выражение подставить вместо соответствующей переменной в другое уравнение. Таким образом, у нас получится линейное уравнение с одной неизвестной.

3. Решаем полученное линейное уравнение и получаем решение.

4. Подставляем полученное решение в выражение, полученное в первом пункте, получаем вторую неизвестную из решения.

5. Выполнить проверку полученного решения.

Пример

Для того, чтобы было более понятно, решим небольшой пример.

Пример 1. Решить систему уравнений:

{x+2*y =12
{2*x-3*y=-18

Решение:

1. Из первого уравнения данной системы выражаем переменную х. Имеем x= (12 -2*y);

2. Подставляем это выражение во второе уравнение, получаем 2*x-3*y=-18; 2*(12 -2*y) - 3*y = -18; 24 - 4y - 3*y = -18;

3. Решаем полученное линейное равнение: 24 - 4y - 3*y =-18; 24-7*y =-18; -7*y = -42; y=6;

4. Подставляем полученный результат в выражение, полученное в первом пункте. x= (12 -2*y); x=12-2*6 = 0; x=0;

5. Проверяем полученное решение, для этого подставляем найденные числа в исходную систему.

{x+2*y =12;
{2*x-3*y=-18;

{0+2*6 =12;
{2*0-3*6=-18;

{12 =12;
{-18=-18;

Получили верные равенства, следовательно, мы правильно нашли решение.

Поделитесь с друзьями или сохраните для себя:

Загрузка...