Наиболее известные системы счисления. Системы счисления. Непозиционные системы счисления. Алфавитные системы счисления

Всё зависит от конкретной системы счисления.

Десятичная система счисления - очевидно, используется практически повсеместно.

Римская система счисления в современном мире используется чаще всего, когда хотят указать на номер по порядку. Например, “ 10” означает количество (десять штук), а римское «Х» означает «десятый».

Двоичная система счисления - наиболее широко используется в компьютерах, так как один разряд двоичного числа соответствует одному биту - минимальной единице информации в компьютерной технике.

Также, двоичную систему счисления традиционно используют при указании линейных размеров в дюймах, например, 7 15 / 16 ″, 3 11 / 32 ″. Самое первое известное использование двоичной системы счисления принадлежит, пожалуй, древнеиндейскому математику Пингале (примерно II-V века до н.э.).

Шестнадцатеричная система счисления широко используется в низкоуровневом программировании, а также в компьютерной документации. В современных компьютерах минимальной единицей памяти является 8-битный байт, значения которого удобно записывать двумя шестнадцатеричными цифрами. Такое использование началось с системы IBM/360, где вся документация использовала шестнадцатеричную систему счисления.

С восьмеричной системой счисления вообще всё интересно. Она использовалась, например, некоторыми американскими индейцами, так как они считали, что нужно считать количество не по количеству пальцев рук, а по количеству промежутков между пальцами .

В Европе в 1716 году король Швеции Карл XII обратился к Эммануилу Сведенборгу с просьбой разработать 64-ричную систему счисления, на что Эммануил Сведенборг заметил, что обычным людям не с таким высоким интеллектом, как у короля, будет сложно разобраться с системой счисления с таким большим основанием и предложил использовать, поэтому, восьмеричную систему счисления . Интересно бы узнать, почему Карл XII выбрал именно такое основание.

Также, восьмеричная система счисления иногда используется в компьютерах - по видимому, чаще всего при определении прав в Unix-подобных операционных системах. Когда-то были компьютеры, в которых использовались 24-х и 36-битные слова. В таких компьютерах очень удобно было использовать восьмеричную систему счисления, так как все биты слова могут быть представлены целым количеством восьмеричных цифр и не нужно было всегда дописывать незначащие нулевые биты в начале. Например, для 36-битного слова нужно ровно 12 восьмеричных разрядов.

В нашем курсе дискретной математики мы изучаем восьмеричную систему, так как это одна из систем, в которую можно выполнить непосредственный перевод из двоичной системы счисления, минуя десятичную.

Шестидесятеричная система счисления широко используется при подсчёте минут и секунд. Происхождение шестидесятеричной системы неясно. Возможно, она связана с двенадцатеричной системой счисления (60 = 5×12, где 5 - число пальцев на руке). Существует также гипотеза О. Нейгебауэра (1927) о том, что после аккадского завоевания шумерского государства там долгое время одновременно существовали две денежно-весовые единицы: шекель (сикль) и мина, причём было установлено их соотношение 1 мина = 60 шекелей. Позднее это деление стало привычным и породило соответствующую систему записи любых чисел .

А можно ли добавлять нолики в начале числа в шестнадцатеричной системе счисления?

Все правила для всех позиционных систем счисления - одинаковые. В десятичной системе счисления допускается приписывать незначащие нули в начале, а после десятичной точки - в конце. Точно также, незначащие нули можно дописывать в любой другой позиционной системе счисления.

Какими символами записывать число в 25-ричной системе счисления?

16-ричная система счисления - достаточно распространённая система счисления. Для этой системы счисления существует стандарт - цифры больше 9 записывают буквами латинского алфавита от A до F.

Все прочие позиционные системы счисления с основанием больше 10 не являются распространёнными и для них не существует стандарта на запись. Но, по аналогии, было бы удобно и в этих системах счисления тоже использовать буквы латинского алфавита.

В частности, в 25-ричной системе счисления первые 10 цифр совпадают с цифрами в десятичной системе счисления - от 0 до 9, а оставшиеся 15 - кодируются буквами латинского алфавита от A до O. Те же самые правила касаются и других позиционных систем счисления.

А как быть с системой счисления, для которой не хватит букв латинского алфавита?

Какого-либо универсального стандарта в этой области нет. Кроме случаев более или менее широко используемых систем счисления.

Если Вам приходится действовать с такой системой счисления, то либо придерживайтесь правил, которые придумали другие (если такой системой счисления пользуется ещё кто-нибудь), либо придумайте собственные правила.

На практике пример такой системы счисления с большим основанием - это 60-ричная система счисления для учёта секунд и минут. Мы все знаем, как записывается время. Например, запись “ 34:17” , означающая «34 минуты 17 секунд» - фактически является записью числа в шестидесятеричной системе счисления с двумя цифрами.

Как правильно читать числа в системах счисления, отличных от десятичной?

В целом, нет стандарта на то, как правильно следует читать такие числа.

Строго говоря, назвать 20 8 словом «двадцать» - не совсем корректно, так как всем известно, «дцать» - означает «десятки», а в восьмеричной системе счисления эта двойка означает не количество десятков, а количество восьмёрок. Вероятно, правильно это число нужно было бы прочитать как «два ноль», но это не является стандартом.

При использовании шестнадцатеричной системы счисления буквы произносятся так, как они обычно прозиносятся в латинском алфавите: «А», «Бэ», «Цэ», «Дэ», «Е», «Эф». Число 1E3.F 16 обычно произносят так: «один е три точка эф».

Тем не менее, если в записи числа используются только десятичные цифры, то эти числа часто читаются так, как если бы они были записаны в десятичной системе счисления. Например, “ 517.5 8 ” можно произнести как «пятьсот семнадцать целых пять десятых в восьмеричной системе счисления». Вероятно, более точно можно было бы сказать так: «пятсот семнадцать целых пять восьмых в восьмеричной системе счисления», но в таком случае у некоторых может возникнуть ступор в понимании того, как записать «пять восьмых».

Иногда части числа называют по разным правилам. Например, так: «пятсот семнадцать точка пять в восьмеричной системе счисления». Стандарта в этой области пока что, кажется, тоже нет.

Думается, что самое важное в произношении чисел - чтобы остальным было понятно, что Вы имеете в виду.

Как запомнить таблицу соответствия двоичных чисел восьмеричным и шестнадцатеричным?

Запомнить эту таблицу можно только с опытом - много раз к ней обращаться, и через некоторое время Вы будете знать её наизусть.

Но запоминать эту таблицу не требуется! Определить соответствие настолько легко, что я даже не могу быть уверенным в том - помню ли я эту таблицу наизусть или каждый раз вычисляю? Чтобы определить соответствие, нужно знать всего несколько совершенно простых вещей:

    Одной 16-ричной цифре соответствует 4 двоичных цифры, а одной 8-ричной - 3 двоичных цифры. Это легко запомнить, так как 2 4 =16, а 2 3 =8.

    Нужно научиться в уме переводить числа от 0 до 7 из восьмеричной системы счисления в десятичную и наоборот. Это очень сложная операция, в уме это могут проделать только вундеркинды. Если Вы не вундеркинд, то можете просто запомнить, что 0=0, 1=1, 2=2, 3=3, 4=4, 5=5, 6=6, а 7 равно 7.

    Нужно научиться в уме переводить числа от 0 до 15 из десятичной системы счисления в шестнадцатеричную. Это очень просто, так как цифры от 0 до 9 совпадают, а числам от 10 до 15 соответствуют буквы латинского алфавита от А до F. Можно каждый раз в уме считать (10 - это А, 11 - это В, 12 - это С и т.д.)

    Самое сложное - это научиться . Но это умение само по себе покрывает значительную часть таблицы.

    Теперь Вы можете легко перевести любое число от 0 до 15 из двоичной системы счисления в десятичную, а потом - в шестнадцатеричную или в восьмеричную. А можете и наоборот.

Чтобы переводить числа, нужно уметь делить в столбик. А как быть, если я не умею делить в столбик?

Представленный здесь теоретический материал подразумевает наличие у Вас некоторых умений. Если этих минимальных умений у Вас ещё нет, то, чтобы понять написанное здесь, сначала имеет смысл получить эти простые умения.

Чтобы разобраться со всем представленным здесь теоретическим материалом, Вам потребуется:

    Понимать, что такое число в принципе.

Разберем одну из важнейших тем по информатике - . В школьной программе она раскрывается довольно "скромно", скорее всего, из-за недостатка отведенных на нее часов. Знания по этой теме, особенно на перевод систем счисления , являются обязательным условием для успешной сдачи ЕГЭ и поступления в ВУЗы на соответствующие факультеты. Ниже подробным образом рассмотрены такие понятия, как позиционные и непозиционные системы счисления , даны примеры этих систем счисления, представлены правила перевода целых десятичных чисел, правильных десятичных дробей и смешанных десятичных чисел в любую другую систему счисления, перевода чисел из любой системы счисления в десятичную, перевода из восьмеричной и шестнадцатиричной систем счисления в двоичную систему счисления . На экзаменах в большом количестве встречаются задачи по данной теме. Умение их решать – одно из требований к абитуриентам. Скоро: По каждой теме раздела, помимо подробного теоретического материала, будут представлены практически все возможные варианты задач для самостоятельного изучения. Кроме того, у вас появится возможность совершенно бесплатно скачать с файлообменника уже готовые подробные решения к данным задачам, иллюстрирующие различные способы получения верного ответа.

епозиционные системы счисления.

Непозиционные системы счисления - системы счисления, в которых количественное значение цифры не зависит от ее местоположения в числе.

К непозиционным системам счисления относится, например, римская, где вместо цифр - латинские буквы.

I 1 (один)
V 5 (пять)
X 10 (десять)
L 50 (пятьдесят)
C 100 (сто)
D 500 (пятьсот)
M 1000 (тысяча)

Здесь буква V обозначает 5 независимо от ее местоположения. Однако стоит упомянуть о том, что хотя римская система счисления и является классическим примером непозиционной системы счисления, не является полностью непозиционной, т.к. меньшая цифра, стоящая перед большей, вычитается из нее:

IL 49 (50-1=49)
VI 6 (5+1=6)
XXI 21 (10+10+1=21)
MI 1001 (1000+1=1001)

озиционные системы счисления.

Позиционные системы счисления - системы счисления, в которых количественное значение цифры зависит от ее местоположения в числе.

Например, если говорить о десятичной системе счисления, то в числе 700 цифра 7 означает "семь сотен", но эта же цифра в числе 71 означает "семь десятков", а в числе 7020 - "семь тысяч".

Каждая позиционная система счисления имеет свое основание . В качестве основания выбирается натуральное число, большее или равное двум. Оно равно количеству цифр, используемых в данной системе счисления.

    Например:
  • Двоичная - позиционная система счисления с основанием 2.
  • Четверичная - позиционная система счисления с основанием 4.
  • Пятиричная - позиционная система счисления с основанием 5.
  • Восьмеричная - позиционная система счисления с основанием 8.
  • Шестнадцатиричная - позиционная система счисления с основанием 16.

Чтобы успешно решать задачи по теме "Системы счисления", ученик должен знать наизусть соответствие двоичных, десятичных, восьмеричных и шестнадцатиричных чисел до 16 10:

10 с/с 2 с/с 8 с/с 16 с/с
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
16 10000 20 10

Полезно знать, как получаются числа в этих системах счисления. Можно догадаться, что в восьмеричной, шестнадцатиричной, троичной и других позиционных системах счисления все происходит аналогично привычной нам десятичной системе:

К числу прибавляется единица и получается новое число. Если разряд единиц становится равен основанию системы счисления, мы увеличиваем число десятков на 1 и т.д.

Этот "переход единицы" как раз и пугает большинство учеников. На самом же деле все довольно просто. Переход происходит, если разряд единиц становится равен основанию системы счисления , мы увеличиваем число десятков на 1. Многие, помня старую добрую десятичную систему моментально путаются в разряда и в этом переходе, ведь десятичный и, например, двоичный десятки - разные вещи.

Отсюда у находчивых учеников появляются "свои методики" (на удивление... работающие) при заполнении, например, таблиц истинности, первые столбцы (значения переменных) которых, фактически, заполняются двоичными числами в порядке возрастания.

Для примера разберем получение чисел в восьмеричной системе : К первому числу (0) прибавляем 1, получаем 1. Затем к 1 прибавляем 1, получаем 2 и т.д. до 7. Если мы прибавим к 7 единицу, получим число равное основанию системы счисления, т.е. 8. Тогда нужно увеличить на единицу разряд десятков (получаем восьмеричный десяток - 10). Далее, очевидно, идут числа 11, 12, 13, 14, 15, 16, 17, 20, ..., 27, 30, ..., 77, 100, 101...

равила перевода из одной системы счисления в другую.

1 Перевод целых десятичных чисел в любую другую систему счисления.

Число нужно разделить на новое основание системы счисления . Первый остаток от деления - это и есть первая младшая цифра нового числа. Если частное от деления меньше или равно новому основанию, то его (частное) нужно снова разделить на новое основание. Деление нужно продолжать, пока не получим частное меньше нового основания. Это есть старшая цифра нового числа (нужно помнить, что, например, в шестнадцатиричной системе после 9 идут буквы, т.е. если в остатке получили 11, нужно записать его как B).

Пример ("деление уголком"): Переведем число 173 10 в восьмеричную систему счисления.


Таким образом, 173 10 =255 8

2 Перевод правильных десятичных дробей в любую другую систему счисления.

Число нужно умножить на новое основание системы счисления. Цифра, перешедшая в целую часть - старшая цифра дробной части нового числа. для получения следующей цифры дробную часть получившегося произведения опять нужно умножать на новое основание системы счисления, пока не произойдет переход в целую часть. Умножение продолжаем, пока дробная часть не станет равна нулю, либо пока не дойдем до указанной в задаче точности ("... вычислить с точностью, например, двух знаков после запятой").

Пример: Переведем число 0,65625 10 в восьмеричную систему счисления.

Система счисления - это способ записи чисел. Обычно, числа записываются с помощью специальных знаков - цифр (хотя и не всегда). Если вы никогда не изучали данный вопрос, то, по крайней мере, вам должны быть известны две системы счисления - это арабская и римская. В первой используются цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 и это позиционная система счисления. А во второй - I, V, X, L, C, D, M и это непозиционная система счисления.

В позиционных системах счисления количество, обозначаемое цифрой в числе, зависит от ее позиции, а в непозиционных - нет. Например:

11 - здесь первая единица обозначает десять, а вторая - 1.
II - здесь обе единицы обозначают единицу.

345, 259, 521 - здесь цифра 5 в первом случае обозначает 5, во втором - 50, а в третьем - 500.

XXV, XVI, VII - здесь, где бы ни стояла цифра V, она везде обозначает пять единиц. Другими словами, величина, обозначаемая знаком V, не зависит от его позиции.

Сложение, умножение и другие математические операции в позиционных системах счисления выполнить легче, чем в непозиционных, т.к. математические операции осуществляются по несложным алгоритмам (например, умножение в столбик, сравнение двух чисел).

В мире наиболее распространены позиционные системы счисления. Помимо знакомой всем с детства десятичной (где используется десять цифр от 0 до 9), в технике широкое распространение нашли такие системы счисление как двоичная (используются цифры 0 и 1), восьмеричная и шестнадцатеричная.

Следует отметить, важную роль нуля. «Открытие» этой цифры в истории человечества сыграло большую роль в формировании позиционных систем счисления.

Основание системы счисления - это количество знаков, которое используется для записи цифр.

Разряд - это позиция цифры в числе. Разрядность числа - количество цифр, из которых состоит число (например, 264 - трехразрядное число, 00010101 - восьмиразрядное число). Разряды нумеруются справа на лево (например, в числе 598 восьмерка занимает первый разряд, а пятерка - третий).

Итак, в позиционной системе счисления числа записываются таким образом, что каждый следующий (движение справа на лево) разряд больше другого на степень основания системы счисления. (придумать схему)

Одно и тоже число (значение) можно представить в различных системах счисления. Представление числа при этом различно, а значение остается неизменным.

Двоичная система счисления

В двоичной системе счисления используются всего две цифры 0 и 1. Другими словами, двойка является основанием двоичной системы счисления. (Аналогично у десятичной системы основание 10.)

Чтобы научиться понимать числа в двоичной системе счисления, сначала рассмотрим, как формируются числа в привычной для нас десятичной системе счисления.

В десятичной системе счисления мы располагаем десятью знаками-цифрами (от 0 до 9). Когда счет достигает 9, то вводится новый разряд (десятки), а единицы обнуляются и счет начинается снова. После 19 разряд десятков увеличивается на 1, а единицы снова обнуляются. И так далее. Когда десятки доходят до 9, то потом появляется третий разряд - сотни.

Двоичная система счисления аналогична десятичной за исключением того, что в формировании числа участвуют всего лишь две знака-цифры: 0 и 1. Как только разряд достигает своего предела (т.е. единицы), появляется новый разряд, а старый обнуляется.

Попробуем считать в двоичной системе:
0 - это ноль
1 - это один (и это предел разряда)
10 - это два
11 - это три (и это снова предел)
100 - это четыре
101 - пять
110 - шесть
111 - семь и т.д.
Перевод чисел из двоичной системы счисления в десятичную

Не трудно заметить, что в двоичной системе счисления длины чисел с увеличением значения растут быстрыми темпами. Как определить, что значит вот это: 10001001? Непривычный к такой форме записи чисел человеческий мозг обычно не может понять сколько это. Неплохо бы уметь переводить двоичные числа в десятичные.

В десятичной системе счисления любое число можно представить в форме суммы единиц, десяток, сотен и т.д. Например:

1476 = 1000 + 400 + 70 + 6

1476 = 1 * 103 + 4 * 102 + 7 * 101 + 6 * 100

Посмотрите на эту запись внимательно. Здесь цифры 1, 4, 7 и 6 - это набор цифр из которых состоит число 1476. Все эти цифры поочередно умножаются на десять возведенную в ту или иную степень. Десять - это основание десятичной системы счисления. Степень, в которую возводится десятка - это разряд цифры за минусом единицы.

Аналогично можно разложить и любое двоичное число. Только основание здесь будет 2:

10001001 = 1*2 7 + 0*2 6 + 0*2 5 + 0*2 4 + 1*2 3 + 0*2 2 + 0*2 1 + 1*2 0

1*2 7 + 0*2 6 + 0*2 5 + 0*2 4 + 1*2 3 + 0*2 2 + 0*2 1 + 1*2 0 = 128 + 0 + 0 + 0 + 8 + 0 + 0 + 1 = 137

Т.е. число 10001001 по основанию 2 равно числу 137 по основанию 10. Записать это можно так:

10001001 2 = 13710
Почему двоичная система счисления так распространена?

Дело в том, что двоичная система счисления - это язык вычислительной техники. Каждая цифра должна быть как-то представлена на физическом носителе. Если это десятичная система, то придется создать такое устройство, которое может быть в десяти состояниях. Это сложно. Проще изготовить физический элемент, который может быть лишь в двух состояниях (например, есть ток или нет тока). Это одна из основных причин, почему двоичной системе счисления уделяется столько внимания.
Перевод десятичного числа в двоичное

Может потребоваться перевести десятичное число в двоичное. Один из способов - это деление на два и формирование двоичного числа из остатков. Например, нужно получить из числа 77 его двоичную запись:

77 / 2 = 38 (1 остаток)
38 / 2 = 19 (0 остаток)
19 / 2 = 9 (1 остаток)
9 / 2 = 4 (1 остаток)
4 / 2 = 2 (0 остаток)
2 / 2 = 1 (0 остаток)
1 / 2 = 0 (1 остаток)

Собираем остатки вместе, начиная с конца: 1001101. Это и есть число 77 в двоичном представлении. Проверим:

1001101 = 1*2 6 + 0*2 5 + 0*2 4 + 1*2 3 + 1*2 2 + 0*2 1 + 1*2 0 = 64 + 0 + 0 + 8 + 4 + 0 + 1 = 77

Восьмеричная система счисления

Итак, современное «железо понимает» лишь двоичную систему счисления. Однако человеку трудно воспринимать длинные записи нулей и единиц с одной стороны, а с другой - переводит числа из двоичной в десятичную систему и обратно, достаточно долго и трудоемко. В результате, часто программисты используют другие системы счисления: восьмеричную и шестнадцатеричную. И 8 и 16 являются степенями двойки, и преобразовывать двоичное число в них (так же как и выполнять обратную операцию) очень легко.

В восьмеричной системе счисления используется восемь знаков-цифр (от 0 до 7). Каждой цифре соответствуют набор из трех цифр в двоичной системе счисления:

000 - 0
001 - 1
010 - 2
011 - 3
100 - 4
101 - 5
110 - 6
111 - 7

Для преобразования двоичного числа в восьмеричное достаточно разбить его на тройки и заменить их соответствующими им цифрами из восьмеричной системы счисления. Разбивать на тройки нужно начинать с конца, а недостающие цифры в начале заменить нулями. Например:

1011101 = 1 011 101 = 001 011 101 = 1 3 5 = 135

Т.е число 1011101 в двоичной системе счисления равно числу 135 в восьмеричной системе счисления. Или 1011101 2 = 1358.

Обратный перевод. Допустим, требуется перевести число 1008 (не заблуждайтесь! 100 в восьмеричной системе - это не 100 в десятичной) в двоичную систему счисления.

100 8 = 1 0 0 = 001 000 000 = 001000000 = 10000002

Перевод восьмеричного числа в десятичное можно осуществить по уже знакомой схеме:

6728 = 6 * 8 2 + 7 * 8 1 + 2 * 8 0 = 6 * 64 + 56 + 2 = 384 + 56 + 2 = 44210
1008 = 1 * 8 2 + 0 * 8 1 + 0 * 8 0 = 6410

Шестнадцатеричная система счисления

Шестнадцатеричная система счисления, так же как и восьмеричная, широко используется в компьютерной науке из-за легкости перевода в нее двоичных чисел. При шестнадцатеричной записи числа получаются более компактными.

В шестнадцатеричной системе счисления используются цифры от 0 до 9 и шесть первых латинских букв - A (10), B (11), C (12), D (13), E (14), F (15).

При переводе двоичного числа в шестнадцатеричное, первое разбивается на группы по четыре разряда, начиная с конца. В случае, если количество разрядов не делится нацело, то первая четверка дописывается нулями впереди. Каждой четверке соответствует цифра шестнадцатеричной системе счисления:

Например:
10001100101 = 0100 1100 0101 = 4 C 5 = 4C5

Если потребуется, то число 4C5 можно перевести в десятичную систему счисления следующим образом (C следует заменить на соответствующее данному символу число в десятичной системе счисления - это 12):

4C5 = 4 * 162 + 12 * 161 + 5 * 160 = 4 * 256 + 192 + 5 = 1221

Максимальное двухразрядное число, которое можно получить с помощью шестнадцатеричной записи - это FF.

FF = 15 * 161 + 15 * 160 = 240 + 15 = 255

255 - это максимальное значение одного байта, равного 8 битам: 1111 1111 = FF. Поэтому с помощью шестнадцатеричной системы счисления очень удобно кратко (с помощью двух цифр-знаков) записывать значения байтов. Внимание! Состояний у 8-ми битного байта может быть 256, однако максимальное значение - 255. Не забывайте про 0 - это как раз 256-е состояние

Лекция 1. Системы счисления

1. История возникновения систем счисления.

2. Позиционные и непозиционные системы счисления.

3. Десятичная система счисления, запись чисел в ней.

4. Разряды

Человеку постоянно приходится иметь дело с числами, поэтому нужно уметь правильно называть и записывать любое число, производить действия над числами. Как правило, все с этим успешно справляются. Помогает здесь способ записи чисел, который в настоящее время используется повсеместно и носит название десятичной системы счисления.

Изучение этой системы начинается в начальных классах, и, конечно, учителю нужны определенные знания в этой области. Он должен знать различные способы записи чисел, алгоритмы арифметических действий и их обоснование. Материал данной лекции дает тот минимум, без которого невозможно разобраться с различными методическими подходами к обучению младших школьников способам записи чисел и выполнению над ними действий.

История возникновения систем счисления.

Понятие числа возникло в глубокой древности. Тогда же появилась необходимость в названии и записи чисел. Язык для наименования, записи чисел и выполнения действий над ними называют системой счисления .

Простейшая система записи натуральных чисел требует лишь одной цифры, например «палочки» (или зарубки на дереве, как у первобытного человека, или узелка на веревке, как у индейцев Америки), которая изображает единицу. Повторяя этот знак, можно записать любое число: каждое число n записывается просто n «палочками». В такой системе счисления удобно выполнять арифметические действия. Но подобный способ записи очень не экономичен и для больших чисел неизбежно приводит к ошибкам в счете.



Поэтому со временем возникли иные, более экономичные и удобные способы записи чисел. Рассмотрим некоторые из них.

В Древней Греции была распространена так называемая аттическая нумерация . Числа 1, 2, 3, 4 обозначались черточками:

Число 5 записывалось знаком Г (древнее начертание буквы «пи», с которой начинается слово «пенте» - пять). Числа 6, 7, 8, 9 обозначались так:

Число 10 обозначалось Δ (начальной буквой слова «дека» - десять). Числа 100, 1000 и 10 000 обозначались Н, Х, М – начальными буквами соответствующих слов.

Другие числа записывались различными комбинациями этих знаков.

В третьем веке до нашей эры аттическая нумерация была вытеснена так называемой ионийской системой . В ней числа 1 – 9 обозначаются первыми девятью буквами алфавита: α (альфа), β (бэта), γ (гамма), δ (дельта), ε (эпсилон), ς (фау), ζ (дзета),
η (эта), (тэта).

Числа 10, 20, 30, 40, 50, 60, 70, 80, 90 – следующими девятью буквами: i (йота),
κ (каппа), λ (ламбда), μ (мю), ν (ню), ξ (кси), ο (омикрон), π (пи), с (копа).

Числа 100, 200, 300, 400, 500, 600, 700, 800, 900 – последними девятью буквами греческого алфавита.

Алфавитную нумерацию, подобную древнегреческой, имели в древности евреи, арабы и многие другие народы Ближнего Востока. У какого народа она возникла впервые неизвестно.

В Древнем Риме в качестве «ключевых» использовались числа 1, 5, 10, 50, 100, 500 и 1000. Они обозначались соответственно буквами I, V, X, L, C, D и М.

Все целые числа (до 5000) записывались с помощью повторения выше приведенных цифр. При этом, если большая цифра стоит перед меньшей, то они складываются, если же меньшая стоит перед большей (в этом случае она не может повторяться), то меньшая вычитается из большей: VI = 6, т.е. 5 + 1; IV = 4, т.е. 5 – 1;
XL = 40, т.е. 50 – 10; LX = 60, т.е. 50 + 10. Подряд одна и та же цифра ставится не более трех раз: LXX = 70, LXXX = 80, число 90 записывается XC (а не LXXXX).

Например: XXVIII = 28, XXXIX = 39, CCCXCVII = 397, MDCCCXVIII = 1818.

Выполнение арифметических действий над многозначными числами в этой записи очень трудно. Однако римская нумерация сохранилась до настоящего времени. Ее используют для обозначения юбилейных дат, наименования конференций, глав в книгах и т.д.

На Руси в старину цифры обозначались буквами. Для указания того, что знак является не буквой, а цифрой, сверху над ними ставился специальный знак, называемый «титло». Первые девять цифр записывались так:

Десятки обозначались так:

Сотни обозначались так:

Тысячи обозначались теми же буквами с «титлами», что и первые девять цифр, но у них слева ставился знак «≠»: ≠ А = 1000, ≠ В = 2000, ≠ Е = 5000.

Десятки тысяч назывались «тьма », их обозначали, обводя знаки единиц кружками:

10 000, = 20 000, = 80 000.

Отсюда произошло выражение «Тьма народу», т.е. очень много народу.

Сотни тысяч назывались «легионами », их обозначали, обводя знаки единиц кружками из точек:

100 000, = 200 000, = 800 000.

Миллионы назывались «леодрами ». Их обозначали, обводя знаки единиц кружками из лучей или запятых:


1 000 000, = 2 000 000.

Десятки миллионов назывались «воронами » или «вранами» и их обозначали, обводя знаки единиц кружками из крестиков или ставя по обе стороны букву К:

Сотни миллионов назывались «колодами ». «Колода» имела специальное обозначение – над буквой и под буквой ставились квадратные скобки:

Иероглифы жителей Древнего Вавилона составлялись из узких вертикальных и горизонтальных клинышков, эти два значка использовались и для записи чисел. Один вертикальный клинышек обозначал единицу, горизонтальный – десяток. В Древнем Вавилоне считали группами по 60 единиц. Например, число 185 представлялось как 3 раза по 60 и еще 5. Записывалось такое число с помощью всего двух знаков, один из которых обозначал, сколько раз взято по 60, а другой - сколько взято единиц.

О том, когда и как возникла у вавилонян шестидесятеричная система, существует много гипотез, но ни одна пока не доказана. Одна из гипотез, состоит в том, что произошло смешение двух племен, одно из которых пользовалось шестеричной системой, а другое – десятичной. Шестидесятеричная система возникла как компромисс между этими двумя системами. Другая гипотеза состоит в том, что вавилоняне считали продолжительность года равной 360 суткам, что, естественно, связывают с числом 60.

Шестидесятеричная система, в некоторой степени, сохранилась до наших дней, например, в делении часа на 60 минут, а минуты - на 60 секунд и в аналогичной системе измерение углов: 1 градус равен 60 минутам, 1 минута – 60 секундам.

Двоичной системой счисления пользовались при счете некоторые первобытные племена, она была известна еще древнекитайским математикам, но по настоящему развил и построил двоичную систему великий немецкий математик Лейбниц, видевший в ней олицетворение глубокой метафизической истины.

Двоичной системой счисления пользуются некоторые (местные) культуры в Африке, Австралии и Южной Америке.

Для изображения чисел в двоичной системе счисления требуется лишь две цифры: 0 и 1. По этой причине двоичную запись числа легко представить, пользуясь физическими элементами, которые имеют два различных устойчивых состояния. Именно это и послужило одной из важных причин широкого использования двоичной системы в современных электронных вычислительных машинах.

Самой экономичной из всех систем счисления является троичная . Двоичная и равносильная ей, в смысле экономичности, четверичная системы, несколько уступают в этом отношении троичной, но превосходят все основные возможные системы. Если для записи чисел от 1 до 10 в десятичной системе требуется 90 различных состояний, а в двоичной – 60, то в троичной системе достаточно 57 состояний.

Наиболее привычная ситуация, в которой проявляется необходимость троичного анализа, - это, пожалуй, взвешивание на чашечных весах. Здесь могут возникнуть три разных случая: либо одна из чашек перевесит другую, либо наоборот, либо же чашки уравновесят друг друга.

Четверичной системой счисления пользуются, главным образом, индейские племена Южной Америки и индейцы юкки в Калифорнии, считающих на промежутках между пальцами.

Пятеричная система счисления была распространена гораздо шире, чем все остальные. Индейцы племени таманакос в Южной Америке употребляют для обозначения числа 5 то же слово, что и для обозначения «всей руки». Слово «шесть» по-таманакски означает «один палец на другой руке», семь – «два пальца на другой руке» и т.д. для восьми и девяти. Десять называется «двумя руками». Желая назвать число от 11 до 14, таманакос протягивают вперед обе руки и считают: «один на ноге, два на ноге» и т.д. до тех пор, пока не доходят до 15 – «всей ноги». Затем следует «один на другой ноге» (число 16) и т.д. до 19. Число 20 по-таманакски означает «один индеец», 21 – «один на руке другого индейца». «Два индейца» означают 40, «три индейца» - 60.

У жителей древней Явы и у ацтеков продолжительность недели составляла 5 дней.

Некоторые историки считают, что римское число X (десять) составлено из двух римских пятерок V (одна из них перевернута), а число V в свою очередь возникло из стилизованного изображения человеческой руки.

Широкое распространение имела в древности двенадцатеричная система счисления . Происхождение ее тоже связано со счетом на пальцах. А именно, так как четыре пальца руки (кроме большого) имеют в совокупности 12 фаланг, то по этим фалангам, перебирая их по очереди большим пальцем, и ведут счет от 1 до 12. Затем 12 принимают за единицу следующего разряда.

Основное преимущество двенадцатеричной системы состоит в том, что ее основание делится без остатка на 2, 3 и 4. Сторонники двенадцатеричной системы появились еще в XVI веке. В более позднее время к их числу принадлежали столь выдающиеся люди, как Герберт Спенсер, Джон Квинси Адамс и Джордж Бернард Шоу. Существует даже американское двенадцатеричное общество, выпускающее два периодических издания: «Двенадцатеричный бюллетень» и «Руководство по двенадцатеричной системе». Всей «двенадцатеричников» общество снабжает специальной счетной линейкой, в которой в качестве основания используется 12.

В устной речи остатки двенадцатеричной системы сохранились и до наших дней: вместо того, чтобы сказать «двенадцать», часть говорят «дюжина». Сохранился обычай считать многие предметы не десятками, а именно дюжинами, например, столовые приборы в сервизе (сервиз на 12 персон) или стулья в мебельном гарнитуре.

Название единицы третьего разряда в двенадцатеричной системе счисления – гросс – встречается теперь редко, но в торговой практике начала XX столетия оно бытовало и, еще сто лет назад, его можно было легко встретить. Например, в написанном в 1928 году стихотворении «Плюшкин» В.В. Маяковский, высмеивая мещан, скупающих подряд все нужное и ненужное, писал:

Оглядев

товаров россыпь,

В двоичной системе счисления используются всего две цифры 0 и 1. Другими словами, двойка является основанием двоичной системы счисления. (Аналогично у десятичной системы основание 10.)

Чтобы научиться понимать числа в двоичной системе счисления, сначала рассмотрим, как формируются числа в привычной для нас десятичной системе счисления.

В десятичной системе счисления мы располагаем десятью знаками-цифрами (от 0 до 9). Когда счет достигает 9, то вводится новый разряд (десятки), а единицы обнуляются и счет начинается снова. После 19 разряд десятков увеличивается на 1, а единицы снова обнуляются. И так далее. Когда десятки доходят до 9, то потом появляется третий разряд – сотни.

Двоичная система счисления аналогична десятичной за исключением того, что в формировании числа участвуют всего лишь две знака-цифры: 0 и 1. Как только разряд достигает своего предела (т.е. единицы), появляется новый разряд, а старый обнуляется.

Попробуем считать в двоичной системе:
0 – это ноль
1 – это один (и это предел разряда)
10 – это два
11 – это три (и это снова предел)
100 – это четыре
101 – пять
110 – шесть
111 – семь и т.д.

Перевод чисел из двоичной системы счисления в десятичную

Не трудно заметить, что в двоичной системе счисления длины чисел с увеличением значения растут быстрыми темпами. Как определить, что значит вот это: 10001001? Непривычный к такой форме записи чисел человеческий мозг обычно не может понять сколько это. Неплохо бы уметь переводить двоичные числа в десятичные.

В десятичной системе счисления любое число можно представить в форме суммы единиц, десяток, сотен и т.д. Например:

1476 = 1000 + 400 + 70 + 6

1476 = 1 * 10 3 + 4 * 10 2 + 7 * 10 1 + 6 * 10 0

Посмотрите на эту запись внимательно. Здесь цифры 1, 4, 7 и 6 - это набор цифр из которых состоит число 1476. Все эти цифры поочередно умножаются на десять возведенную в ту или иную степень. Десять – это основание десятичной системы счисления. Степень, в которую возводится десятка – это разряд цифры за минусом единицы.

Аналогично можно разложить и любое двоичное число. Только основание здесь будет 2:

10001001 = 1*2 7 + 0*2 6 + 0*2 5 + 0*2 4 + 1*2 3 + 0*2 2 + 0*2 1 + 1*2 0

1*2 7 + 0*2 6 + 0*2 5 + 0*2 4 + 1*2 3 + 0*2 2 + 0*2 1 + 1*2 0 = 128 + 0 + 0 + 0 + 8 + 0 + 0 + 1 = 137

Т.е. число 10001001 по основанию 2 равно числу 137 по основанию 10. Записать это можно так:

10001001 2 = 137 10

Почему двоичная система счисления так распространена?

Дело в том, что двоичная система счисления – это язык вычислительной техники. Каждая цифра должна быть как-то представлена на физическом носителе. Если это десятичная система, то придется создать такое устройство, которое может быть в десяти состояниях. Это сложно. Проще изготовить физический элемент, который может быть лишь в двух состояниях (например, есть ток или нет тока). Это одна из основных причин, почему двоичной системе счисления уделяется столько внимания.

Перевод десятичного числа в двоичное

Может потребоваться перевести десятичное число в двоичное. Один из способов – это деление на два и формирование двоичного числа из остатков. Например, нужно получить из числа 77 его двоичную запись:

77 / 2 = 38 (1 остаток)
38 / 2 = 19 (0 остаток)
19 / 2 = 9 (1 остаток)
9 / 2 = 4 (1 остаток)
4 / 2 = 2 (0 остаток)
2 / 2 = 1 (0 остаток)
1 / 2 = 0 (1 остаток)

Собираем остатки вместе, начиная с конца: 1001101. Это и есть число 77 в двоичном представлении. Проверим:

1001101 = 1*2 6 + 0*2 5 + 0*2 4 + 1*2 3 + 1*2 2 + 0*2 1 + 1*2 0 = 64 + 0 + 0 + 8 + 4 + 0 + 1 = 77

Поделитесь с друзьями или сохраните для себя:

Загрузка...