Непрерывность функций. Непрерывность функции в точке Непрерывность функции в точке 3 определения

Определение непрерывности по Гейне

Говорят, что функция действительного переменного \(f\left(x \right)\) является непрерывной в точке \(a \in \mathbb{R}\) (\(\mathbb{R}-\)множество действительных чисел), если для любой последовательности \(\left\{ {{x_n}} \right\}\), такой, что \[\lim\limits_{n \to \infty } {x_n} = a,\] выполняется соотношение \[\lim\limits_{n \to \infty } f\left({{x_n}} \right) = f\left(a \right).\] На практике удобно использовать следующие \(3\) условия непрерывности функции \(f\left(x \right)\) в точке \(x = a\) (которые должны выполняться одновременно):

  1. Функция \(f\left(x \right)\) определена в точке \(x = a\);
  2. Предел \(\lim\limits_{x \to a} f\left(x \right)\) существует;
  3. Выполняется равенство \(\lim\limits_{x \to a} f\left(x \right) = f\left(a \right)\).

Определение непрерывности по Коши (нотация \(\varepsilon - \delta\))

Рассмотрим функцию \(f\left(x \right)\), которая отображает множество действительных чисел \(\mathbb{R}\) на другое подмножество \(B\) действительных чисел. Говорят, что функция \(f\left(x \right)\) является непрерывной в точке \(a \in \mathbb{R}\), если для любого числа \(\varepsilon > 0\) существует число \(\delta > 0\), такое, что для всех \(x \in \mathbb{R}\), удовлетворяющих соотношению \[\left| {x - a} \right| Определение непрерывности в терминах приращений аргумента и функции

Определение непрерывности можно также сформулировать, используя приращения аргумента и функции. Функция является непрерывной в точке \(x = a\), если справедливо равенство \[\lim\limits_{\Delta x \to 0} \Delta y = \lim\limits_{\Delta x \to 0} \left[ {f\left({a + \Delta x} \right) - f\left(a \right)} \right] = 0,\] где \(\Delta x = x - a\).

Приведенные определения непрерывности функции эквивалентны на множестве действительных чисел.

Функция является непрерывной на данном интервале , если она непрерывна в каждой точке этого интервала.

Теоремы непрерывности

Теорема 1.
Пусть функция \(f\left(x \right)\) непрерывна в точке \(x = a\) и \(C\) является константой. Тогда функция \(Cf\left(x \right)\) также непрерывна при \(x = a\).

Теорема 2.
Даны две функции \({f\left(x \right)}\) и \({g\left(x \right)}\), непрерывные в точке \(x = a\). Тогда сумма этих функций \({f\left(x \right)} + {g\left(x \right)}\) также непрерывна в точке \(x = a\).

Теорема 3.
Предположим, что две функции \({f\left(x \right)}\) и \({g\left(x \right)}\) непрерывны в точке \(x = a\). Тогда произведение этих функций \({f\left(x \right)} {g\left(x \right)}\) также непрерывно в точке \(x = a\).

Теорема 4.
Даны две функции \({f\left(x \right)}\) и \({g\left(x \right)}\), непрерывные при \(x = a\). Тогда отношение этих функций \(\large\frac{{f\left(x \right)}}{{g\left(x \right)}}\normalsize\) также непрерывно при \(x = a\) при условии, что \({g\left(a \right)} \ne 0\).

Теорема 5.
Предположим, что функция \({f\left(x \right)}\) является дифференцируемой в точке \(x = a\). Тогда функция \({f\left(x \right)}\) непрерывна в этой точке (т.е. из дифференцируемости следует непрерывность функции в точке; обратное − неверно).

Теорема 6 (Теорема о предельном значении).
Если функция \({f\left(x \right)}\) непрерывна на закрытом и ограниченном интервале \(\left[ {a,b} \right]\), то она ограничена сверху и снизу на данном интервале. Другими словами, существуют числа \(m\) и \(M\), такие, что \ для всех \(x\) в интервале \(\left[ {a,b} \right]\) (рисунок 1).

Рис.1

Рис.2

Теорема 7 (Теорема о промежуточном значении).
Пусть функция \({f\left(x \right)}\) непрерывна на закрытом и ограниченном интервале \(\left[ {a,b} \right]\). Тогда, если \(c\) − некоторое число, большее \({f\left(a \right)}\) и меньшее \({f\left(b \right)}\), то существует число \({x_0}\), такое, что \ Данная теорема проиллюстрирована на рисунке 2.

Непрерывность элементарных функций

Все элементарные функции являются непрерывными в любой точке свой области определения.

Функция называется элементарной , если она построена из конечного числа композиций и комбинаций
(с использованием \(4\) действий - сложение, вычитание, умножение и деление) . Множество основных элементарных функций включает в себя:

Непрерывность функции в точке.

Функция , определенная в окрестности некоторой точки , называется непрерывной в точке , если предел функции и ее значение в этой точке равны, т.е.

Тот же факт можно записать иначе:

Если функция определена в некоторой окрестности точки , но не является непрерывной в самой точке , то она называется разрывной функцией, а точка – точкой разрыва.

Пример непрерывной функции:

0 x 0 -D x 0 x 0 +D x

Пример разрывной функции:

Функция называется непрерывной в точке , если для любого положительного числа существует такое число , что для любых , удовлетворяющих условию: верно неравенство .

Функция называется непрерывной в точке , если приращение функции в точке является бесконечно малой величиной.

где – бесконечно малая при .

Свойства непрерывных функций.

1) cумма, разность и произведение непрерывных в точке функций – есть функция, непрерывная в точке ;

2) частное двух непрерывных функций – есть непрерывная функция при условии, что не равна нулю в точке ;

3) cуперпозиция непрерывных функций – есть непрерывная функция.

Это свойство может быть записано следующим образом:

Если – непрерывные функции в точке , то функция – тоже непрерывная функция в этой точке.

Справедливость приведенных выше свойств можно легко доказать,

используя теоремы о пределах.

Непрерывность некоторых элементарных функций.

1. Функция , – непрерывная функция на всей области определения.

2. Рациональная функция непрерывна для всех значений , кроме тех, при которых знаменатель обращается в ноль. Таким образом, функция этого вида непрерывна на всей области определения.

3. Тригонометрические функции и непрерывны на своей области определения.

Докажем свойство 3 для функции .

Запишем приращение функции , или после преобразования:

Действительно, имеется предел произведения двух функций и . При этом функция косинус – ограниченная функция при , а т.к. предел функции синус , то она является бесконечно малой при .

Таким образом, имеется произведение ограниченной функции на бесконечно малую, следовательно, это произведение, т.е. функция – бесконечно малая. В соответствии с рассмотренными выше определениями, функция – непрерывная функция для любого значения из области определения, т.к. ее приращение в этой точке – бесконечно малая величина.

Точки разрыва и их классификация.

Рассмотрим некоторую функцию , непрерывную в окрестности точки , за исключением может быть самой этой точки. Из определения точки разрыва функции следует, что является точкой разрыва, если функция не определена в этой точке или не является в ней непрерывной.


Следует отметить также, что непрерывность функции может быть односторонней. Поясним это следующим образом.

Если односторонний предел (см. выше) , то функция называется непрерывной справа.


Точка называется точкой разрыва функции , если не определена в точке или не является непрерывной в этой точке.

Точка называется точкой разрыва 1- го рода , если в этой точке функция имеет конечные, но не равные друг другу левый и правый пределы:

Для выполнения условий этого определения не требуется, чтобы функция была определена в точке , достаточно того, что она определена слева и справа от нее.

Из определения можно сделать вывод, что в точке разрыва 1–го рода функция может иметь только конечный скачок. В некоторых частных случаях точку разрыва 1–го рода еще иногда называют устранимой точкой разрыва, но подробнее об этом поговорим ниже.

Точка называется точкой разрыва 2–го рода , если в этой точке функция не имеет хотя бы одного из односторонних пределов, или хотя бы один из них бесконечен.

Пример 1 . Функция Дирихле (Дирихле Петер Густав (1805-1859) – немецкий математик, член-корреспондент Петербургской АН 1837 г.)

не является непрерывной в любой точке х 0 .

Пример 2 . Функция имеет в точке точку разрыва 2–го рода, т.к. .

Пример 3 .

Функция не определена в точке , но имеет в ней конечный предел , т.е. в точке функция имеет точку разрыва 1–го рода. Это – устранимая точка разрыва, т.к. если доопределить функцию:

График этой функции:

Пример 4 .

Эта функция также обозначается – знак . В точке функция не определена. Т.к. левый и правый пределы функции различны, то точка разрыва – 1–го рода. Если доопределить функцию в точке , положив , то функция будет непрерывна справа, если положить , то функция будет непрерывной слева, если положить равное какому- либо числу, отличному от 1 или –1, то функция не будет непрерывна ни слева, ни справа, но во всех случаях тем не менее будет иметь в точке разрыв 1–го рода. В этом примере точка разрыва 1–го рода не является устранимой.

Таким образом, для того, чтобы точка разрыва 1–го рода была устранимой, необходимо, чтобы односторонние пределы справа и слева были конечны и равны, а функция была бы в этой точке не определена.

2.2. Непрерывность функции на интервале и на отрезке.

Функция называется непрерывной на интервале (отрезке) , если она непрерывна в любой точке интервала (отрезка).

При этом не требуется непрерывность функции на концах отрезка или интервала, необходима только односторонняя непрерывность на концах отрезка или интервала.

Свойства функций, непрерывных на отрезке.

Свойство 1 . (Первая теорема Вейерштрасса (Вейерштрасс Карл (1815-1897) - немецкий математик)). Функция, непрерывная на отрезке, ограничена на этом отрезке, т.е. на отрезке выполняется условие:

Доказательство этого свойства основано на том, что функция, непрерывная в точке , ограничена в некоторой ее окрестности, а если разбивать отрезок на бесконечное количество отрезков, которые “стягиваются” к точке , то образуется некоторая окрестность точки .

Свойство 2 . Функция, непрерывная на отрезке , принимает на нем наибольшее и наименьшее значения.

Т.е. существуют такие значения и , что , , причем:

Отметим. что эти наибольшие и наименьшие значения функция может принимать на отрезке и несколько раз (например – ).

Разность между наибольшим и наименьшим значением функции на отрезке называется колебанием функции на отрезке.

Свойство 3 . (Вторая теорема Больцано–Коши). Функция, непрерывная на отрезке , принимает на этом отрезке все значения между двумя произвольными величинами.

Свойство 4 . Если функция непрерывна в точке , то существует некоторая окрестность точки , в которой функция сохраняет знак.

Свойство 5 . (Первая теорема Больцано (1781-1848) – Коши). Если функция - непрерывная на отрезке и имеет на концах отрезка значения противоположных знаков, то существует такая точка внутри этого отрезка, где . и близки к нулю.

в точке функция непрерывна в точке точка разрыва 1–го рода

Исследование функции на непрерывность в точке проводится по уже накатанной рутинной схеме, которая состоит в проверке трёх условий непрерывности:

Пример 1

Решение :

1) Под прицел попадает единственная точка , в которой функция не определена.

Односторонние пределы конечны и равны.

Таким образом, в точке функция терпит устранимый разрыв.

Как выглядит график данной функции?

Хочется провести упрощение , и вроде бы получается обычная парабола. НО исходная функция не определена в точке , поэтому обязательна следующая оговорка:

Выполним чертёж:

Ответ : функция непрерывна на всей числовой прямой кроме точки , в которой она терпит устранимый разрыв.

Функцию можно доопределить хорошим или не очень способом, но по условию этого не требуется.

Вы скажете, пример надуманный? Ничуть. Десятки раз встречалось на практике. Почти все задачи сайта родом из реальных самостоятельных и контрольных работ.

Разделаемся с любимыми модулями:

Пример 2

Исследовать функцию на непрерывность. Определить характер разрывов функции, если они существуют. Выполнить чертёж.

Решение : почему-то студенты боятся и не любят функции с модулем, хотя ничего сложного в них нет. Таких вещей мы уже немного коснулись на уроке Геометрические преобразования графиков . Поскольку модуль неотрицателен, то он раскрывается следующим образом: , где «альфа» - некоторое выражение. В данном случае , и наша функция должна расписаться кусочным образом:

Но дроби обоих кусков предстоит сократить на . Сокращение, как и в предыдущем примере, не пройдёт без последствий. Исходная функция не определена в точке , так как знаменатель обращается в ноль. Поэтому в системе следует дополнительно указать условие , и первое неравенство сделать строгим:

Теперь об ОЧЕНЬ ПОЛЕЗНОМ приёме решения : перед чистовым оформлением задачи на черновике выгодно сделать чертёж (независимо от того, требуется он по условию или нет). Это поможет, во-первых, сразу увидеть точки непрерывности и точки разрыва, а, во-вторых, 100%-но убережёт от ошибок при нахождении односторонних пределов.

Выполним чертёж. В соответствии с нашими выкладками, слева от точки необходимо начертить фрагмент параболы (синий цвет), а справа - кусок параболы (красный цвет), при этом функция не определена в самой точке :

Если есть сомнения, возьмите несколько значений «икс», подставьте их в функцию (не забывая, что модуль уничтожает возможный знак «минус») и сверьтесь с графиком.


Исследуем функцию на непрерывность аналитически:

1) Функция не определена в точке , поэтому сразу можно сказать, что не является в ней непрерывной.

2) Установим характер разрыва, для этого вычислим односторонние пределы:

Односторонние пределы конечны и различны, значит, функция терпит разрыв 1-го рода со скачком в точке . Заметьте, что не имеет значения, определена функция в точке разрыва или нет.

Теперь остаётся перенести чертёж с черновика (он сделан как бы с помощью исследования;-)) и завершить задание:

Ответ : функция непрерывна на всей числовой прямой кроме точки , в которой она терпит разрыв первого рода со скачком.

Иногда требуют дополнительно указать скачок разрыва. Вычисляется он элементарно - из правого предела нужно вычесть левый предел: , то есть в точке разрыва наша функция прыгнула на 2 единицы вниз (о чём нам сообщает знак «минус»).

Пример 3

Исследовать функцию на непрерывность. Определить характер разрывов функции, если они существуют. Сделать чертёж.

Это пример для самостоятельного решения, примерный образец решения в конце урока.

Перейдём к наиболее популярной и распространённой версии задания, когда функция состоит из трёх кусков:

Пример 4

Исследовать функцию на непрерывность и построить график функции

Решение : очевидно, что все три части функции непрерывны на соответствующих интервалах, поэтому осталось проверить только две точки «стыка» между кусками. Сначала выполним чертёж на черновике, технику построения я достаточно подробно закомментировал в первой части статьи. Единственное, необходимо аккуратно проследить за нашими особенными точками: в силу неравенства значение принадлежит прямой (зелёная точка), и в силу неравенство значение принадлежит параболе (красная точка):

Ну вот, в принципе, всё понятно =) Осталось оформить решение. Для каждой из двух «стыковых» точек стандартно проверяем 3 условия непрерывности:

I)

Односторонние пределы конечны и различны, значит, функция терпит разрыв 1-го рода со скачком в точке .

Вычислим скачок разрыва как разность правого и левого пределов:
, то есть, график рванул на одну единицу вверх.

II) Исследуем на непрерывность точку

1) - функция определена в данной точке.

2) Найдём односторонние пределы:

Односторонние пределы конечны и равны, значит, существует общий предел.

На завершающем этапе переносим чертёж на чистовик, после чего ставим финальный аккорд:

Ответ : функция непрерывна на всей числовой прямой, кроме точки , в которой она терпит разрыв первого рода со скачком.

Пример 5

Исследовать функцию на непрерывность и построить её график .

Это пример для самостоятельного решения, краткое решение и примерный образец оформления задачи в конце урока.

Может сложиться впечатление, что в одной точке функция обязательно должна быть непрерывной, а в другой - обязательно должен быть разрыв. На практике это далеко не всегда так. Постарайтесь не пренебрегать оставшимися примерами - будет несколько интересных и важных фишек:

Пример 6

Дана функция . Исследовать функцию на непрерывность в точках . Построить график.

Решение : и снова сразу выполним чертёж на черновике:

Особенность данного графика состоит в том, что при кусочная функция задаётся уравнением оси абсцисс . Здесь данный участок прорисован зелёным цветом, а в тетради его обычно жирно выделяют простым карандашом. И, конечно же, не забываем про наших баранов: значение относится к ветке тангенса (красная точка), а значение принадлежит прямой .

Из чертежа всё понятно - функция непрерывна на всей числовой прямой, осталось оформить решение, которое доводится до полного автоматизма буквально после 3-4-х подобных примеров:

I) Исследуем на непрерывность точку

1) - функция определена в данной точке.

2) Вычислим односторонние пределы:

Значит, общий предел существует.

Случился тут небольшой курьёз. Дело в том, что я создал немало материалов о пределах функции , и несколько раз хотел, да несколько раз забывал об одном простом вопросе. И вот, невероятным усилием воли таки заставил себя не потерять мысль =) Скорее всего, некоторые читатели-«чайники» сомневаются: чему равен предел константы? Предел константы равен самой константе. В данном случае предел нуля равен самому нулю (левосторонний предел).

3) - предел функции в точке равен значению данной функции в данной точке.

Таким образом, функция непрерывна в точке по определению непрерывности функции в точке.

II) Исследуем на непрерывность точку

1) - функция определена в данной точке.

2) Найдём односторонние пределы:

И здесь, в правостороннем пределе - предел единицы равен самой единице.

Общий предел существует.

3) - предел функции в точке равен значению данной функции в данной точке.

Таким образом, функция непрерывна в точке по определению непрерывности функции в точке.

Как обычно, после исследования переносим наш чертёж на чистовик.

Ответ : функция непрерывна в точках .

Обратите внимание, что в условии нас ничего не спрашивали про исследование всей функции на непрерывность, и хорошим математическим тоном считается формулировать точный и чёткий ответ на поставленный вопрос. Кстати, если по условию не требуется строить график, то вы имеете полное право его и не строить (правда, потом преподаватель может заставить это сделать).

Небольшая математическая «скороговорка» для самостоятельного решения:

Пример 7

Дана функция .

Исследовать функцию на непрерывность в точках . Классифицировать точки разрыва, если они есть. Выполнить чертёж.

Постарайтесь правильно «выговорить» все «слова» =) И график нарисовать поточнее, точность, она везде лишней не будет;-)

Как вы помните, я рекомендовал незамедлительно выполнять чертёж на черновике, но время от времени попадаются такие примеры, где не сразу сообразишь, как выглядит график. Поэтому в ряде случаев выгодно сначала найти односторонние пределы и только потом на основе исследования изобразить ветви. В двух заключительных примерах мы, кроме того, освоим технику вычисления некоторых односторонних пределов:

Пример 8

Исследовать на непрерывность функцию и построить её схематический график.

Решение : нехорошие точки очевидны: (обращает в ноль знаменатель показателя) и (обращает в ноль знаменатель всей дроби). Малопонятно, как выглядит график данной функции, а значит, сначала лучше провести исследование:

I) Исследуем на непрерывность точку

2) Найдём односторонние пределы:

Обратите внимание на типовой приём вычисления одностороннего предела : в функцию вместо «икса» мы подставляем . В знаменателе никакого криминала: «добавка» «минус ноль» не играет роли, и получается «четыре». А вот в числителе происходит небольшой триллер: сначала в знаменателе показателя убиваем -1 и 1, в результате чего получается . Единица, делённая на , равна «минус бесконечности», следовательно: . И, наконец, «двойка» в бесконечно большой отрицательной степени равна нулю: . Или, если ещё подробнее: .

Вычислим правосторонний предел:

И здесь - вместо «икса» подставляем . В знаменателе «добавка» снова не играет роли: . В числителе проводятся аналогичные предыдущему пределу действия: уничтожаем противоположные числа и делим единицу на:

Правосторонний предел бесконечен, значит, функция терпит разрыв 2-го рода в точке .

II) Исследуем на непрерывность точку

1) Функция не определена в данной точке.

2) Вычислим левосторонний предел:

Метод такой же: подставляем в функцию вместо «икса» . В числителе ничего интересного - получается конечное положительно число . А в знаменателе раскрываем скобки, убираем «тройки», и решающую роль играет «добавка» .

По итогу, конечное положительное число, делённое на бесконечно малое положительное число , даёт «плюс бесконечность»: .

Правосторонний предел, как брат близнец, за тем лишь исключением, что в знаменателе выплывает бесконечно малое отрицательное число :

Односторонние пределы бесконечны, значит, функция терпит разрыв 2-го рода в точке .

Таким образом, у нас две точки разрыва, и, очевидно, три ветки графика. Для каждой ветки целесообразно провести поточечное построение, т.е. взять несколько значений «икс» и подставить их в . Заметьте, что по условию допускается построениесхематического чертежа, и такое послабление естественно для ручной работы. Я строю графики с помощью проги, поэтому не имею подобных затруднений, вот достаточно точная картинка:

Прямые являются вертикальными асимптотами для графика данной функции.

Ответ : функция непрерывна на всей числовой прямой кроме точек , в которых она терпит разрывы 2-го рода.

Более простая функция для самостоятельного решения:

Пример 9

Исследовать на непрерывность функцию и выполнить схематический чертёж.

Примерный образец решения в конце, который подкрался незаметно.

До скорых встреч!

Решения и ответы:

Пример 3: Решение : преобразуем функцию: . Учитывая правило раскрытия модуля и тот факт, что , перепишем функцию в кусочном виде:

Исследуем функцию на непрерывность.

1) Функция не определена в точке .


Односторонние пределы конечны и различны, значит, функция терпит разрыв 1-го рода со скачком в точке . Выполним чертёж:

Ответ : функция непрерывна на всей числовой прямой кроме точки , в которой она терпит разрыв первого рода со скачком. Скачок разрыва: (две единицы вверх).

Пример 5: Решение : каждая из трёх частей функции непрерывна на своём интервале.
I)
1)

2) Вычислим односторонние пределы:


, значит, общий предел существует.
3) - предел функции в точке равен значению данной функции в данной точке.
Таким образом, функция непрерывна в точке по определению непрерывности функции в точке.
II) Исследуем на непрерывность точку

1) - функция определена в данной точке. функция терпит разрыв 2-го рода, в точке

Как найти область определения функции?

Примеры решений

Если где-то нет чего-то, значит, где-то что-то есть

Продолжаем изучение раздела «Функции и графики», и следующая станция нашего путешествия - Область определения функции . Активное обсуждение данного понятия началось на первом же уроке о графиках функций , где я рассмотрел элементарные функции, и, в частности, их области определения. Поэтому чайникам рекомендую начать с азов темы, поскольку я не буду вновь останавливаться на некоторых базовых моментах.

Предполагается, читатель знает области определения основных функций: линейной, квадратичной, кубической функции, многочленов, экспоненты, логарифма, синуса, косинуса. Они определены на . За тангенсы, арксинусы, так и быть, прощаю =) Более редкие графики запоминаются далеко не сразу.

Область определения - вроде бы вещь простая, и возникает закономерный вопрос, о чём же будет статья? На данном уроке я рассмотрю распространённые задачи на нахождение области определения функции. Кроме того, мы повторим неравенства с одной переменной , навыки решения которых потребуются и в других задачах высшей математики. Материал, к слову, весь школьный, поэтому будет полезен не только студентам, но и учащимся. Информация, конечно, не претендует на энциклопедичность, но зато здесь не надуманные «мёртвые» примеры, а жареные каштаны, которые взяты из настоящих практических работ.

Начнём с экспресс-вруба в тему. Коротко о главном: речь идёт о функции одной переменной . Её область определения - это множество значений «икс» , для которых существуют значения «игреков». Рассмотрим условный пример:

Область определения данной функции представляет собой объединение промежутков:
(для тех, кто позабыл: - значок объединения). Иными словами, если взять любое значение «икс» из интервала , или из , или из , то для каждого такого «икс» будет существовать значение «игрек».

Грубо говоря, где область определения - там есть график функции. А вот полуинтервал и точка «цэ» не входят в область определения, поэтому графика там нет.

Да, кстати, если что-нибудь не понятно из терминологии и/или содержания первых абзацев, таки лучше вернуться к статье Графики и свойства элементарных функций .

Пусть точка a принадлежит области задания функции f(x) и любая ε -окрестность точки a содержит отличные от a точки области задания функции f(x) , т.е. точка a является предельной точкой множества {x} , на котором задана функция f(x) .

Определение . Функция f(x) называется непрерывной в точке a , если функция f(x) имеет в точке a предел и этот предел равен частному значению f(a) функции f(x) в точке a .

Из этого определения имеем следующее условие непрерывности функции f(x) в точке a :

Так как , то мы можем записать

Следовательно, для непрерывной в точке a функции символ предельного перехода и символ f характеристики функции можно менять местами.

Определение . Функция f(x) называется непрерывной справа (слева) в точке a , если правый (левый) предел этой функции в точке a существует и равен частному значению f(a) функции f(x) в точке a .

Тот факт, что функция f(x) непрерывна в точке a справа записывают так:

А непрерывность функции f(x) в точке a слева записывают как:

Замечание . Точки, в которых функция не обладает свойством непрерывности, называются точками разрыва этой функции.

Теорема . Пусть на одном и том же множестве заданы функции f(x) и g(x) , непрерывные в точке a . Тогда функции f(x)+g(x) , f(x)-g(x) , f(x) · g(x) и f(x)/g(x) - непрерывны в точке a (в случае частного нужно дополнительно требовать g(a) ≠ 0 ).

Непрерывность основных элементарных функций

1) Степенная функция y=x n при натуральном n непрерывна на всей числовой прямой.

Сначала рассмотрим функцию f(x)=x . По первому определению предела функции в точке a возьмем любую последовательность {x n } , сходящуюся к a , тогда соответствующая последовательность значений функций {f(x n)=x n } также будет сходиться к a , то есть , то есть функция f(x)=x непрерывная в любой точек числовой прямой.

Теперь рассмотрим функцию f(x)=x n , где n - натуральное число, тогда f(x)=x · x · … · x . Перейдем к пределу при x → a , получим , то есть функция f(x)=x n непрерывна на числовой прямой.

2) Показательная функция.

Показательная функция y=a x при a>1 является непрерывной функцией в любой точке бесконечной прямой.

Показательная функция y=a x при a>1 удовлетворяет условиям:

3) Логарифмическая функция.

Логарифмическая функция непрерывна и возрастает на всей полупрямой x>0 при a>1 и непрерывна и убывает на всей полупрямой x>0 при 0, причем

4) Гиперболические функции.

Гиперболическими функциями называются следующие функции:

Из определения гиперболических функции следует, что гиперболический косинус, гиперболический синус и гиперболический тангенс заданы на всей числовой оси, а гиперболический котангенс определен всюду на числовой оси, за исключением точки x=0 .

Гиперболические функции непрерывны в каждой точке области их задания (это следует из непрерывности показательной функции и теоремы об арифметических действиях).

5) Степенная функция

Степенная функция y=x α =a α log a x непрерывна в каждой точке открытой полупрямой x>0 .

6) Тригонометрические функции.

Функции sin x и cos x непрерывны в каждой точке x бесконечной прямой. Функция y=tg x (kπ-π/2,kπ+π/2) , а функция y=ctg x непрерывна на каждом из интервалов ((k-1)π,kπ) (здесь всюду k - любое целое число, т.е. k=0, ±1, ±2, …) .

7) Обратные тригонометрические функции.

Функции y=arcsin x и y=arccos x непрерывны на отрезке [-1, 1] . Функции y=arctg x и y=arcctg x непрерывны на бесконечной прямой.

Два замечательных предела

Теорема . Предел функции (sin x)/x в точке x=0 существует и равен единице, т.е.

Этот предел называется первым замечательным пределом .

Доказательство . При 0 справедливы неравенства 0<\sin x. Разделим эти неравенства на sin x , тогда получим

Эти неравенства справедливы также и для значений x , удовлетворяющих условиям -π/2. Это следует из того, что cos x=cos(-x) и . Так как cos x - непрерывная функция, то . Таким образом, для функций cos x , 1 и в некоторой δ -окрестности точки x=0 выполняются все условия теорем. Следовательно, .

Теорема . Предел функции при x → ∞ существует и равен числу e :

Этот предел называется вторым замечательным пределом .

Замечание . Верно также, что

Непрерывность сложной функции

Теорема . Пусть функция x=φ(t) непрерывна в точке a , а функция y=f(x) непрерывна в точке b=φ(a) . Тогда сложная функция y=f[φ(t)]=F(t) непрерывна в точке a .

Пусть x=φ(t) и y=f(x) - простейшие элементарные функции, причем множество значений {x} функции x=φ(t) является областью задания функции y=f(x) . Как мы знаем, элементарные функции непрерывны в каждой точке области задания. Поэтому по предыдущей теореме сложная функция y=f(φ(t)) , то есть суперпозиция двух элементарных функций, непрерывна. Например, функция непрерывна в любой точке x ≠ 0 , как сложная функция от двух элементарных функций x=t -1 и y=sin x . Также функция y=ln sin x непрерывна в любой точке интервалов (2kπ,(2k+1)π) , k ∈ Z (sin x>0 ).

Поделитесь с друзьями или сохраните для себя:

Загрузка...