Определение производных высших порядков формула лейбница. Старт в науке. Интегрирование по частям при вычислении определенного интеграла

Производные высших порядков

На данном уроке мы научимся находить производные высших порядков, а также записывать общую формулу «энной» производной. Кроме того, будет рассмотрена формула Лейбница таковой производной и по многочисленным просьбам – производные высших порядков от неявно заданной функции . Предлагаю сразу же пройти мини-тест:

Вот функция: и вот её первая производная:

В том случае, если у вас возникли какие-либо трудности/недопонимание по поводу этого примера, пожалуйста, начните с двух базовых статей моего курса: Как найти производную? и Производная сложной функции . После освоения элементарных производных рекомендую ознакомиться с уроком Простейшие задачи с производной , на котором мы разобрались, в частности со второй производной .

Нетрудно даже догадаться, что вторая производная – это производная от 1-й производной:

В принципе, вторую производную уже считают производной высшего порядка.

Аналогично: третья производная – это производная от 2-й производной:

Четвёртная производная – есть производная от 3-й производной:

Пятая производная: , и очевидно, что все производные более высоких порядков тоже будут равны нулю:

Помимо римской нумерации на практике часто используют следующие обозначения:
, производную же «энного» порядка обозначают через . При этом надстрочный индекс нужно обязательно заключать в скобки – чтобы отличать производную от «игрека» в степени.

Иногда встречается такая запись: – третья, четвёртая, пятая, …, «энная» производные соответственно.

Вперёд без страха и сомнений:

Пример 1

Дана функция . Найти .

Решение : что тут попишешь… – вперёд за четвёртой производной:)

Четыре штриха ставить уже не принято, поэтому переходим на числовые индексы:

Ответ :

Хорошо, а теперь задумаемся над таким вопросом: что делать, если по условию требуется найти не 4-ю, а например, 20-ю производную? Если для производной 3-4-5-го (максимум, 6-7-го) порядка решение оформляется достаточно быстро, то до производных более высоких порядков мы «доберёмся» ой как не скоро. Не записывать же, в самом деле, 20 строк! В подобной ситуации нужно проанализировать несколько найдённых производных, увидеть закономерность и составить формулу «энной» производной . Так, в Примере №1 легко понять, что при каждом следующем дифференцировании перед экспонентой будет «выскакивать» дополнительная «тройка», причём на любом шаге степень «тройки» равна номеру производной, следовательно:

Где – произвольное натуральное число.

И действительно, если , то получается в точности 1-я производная: , если – то 2-я: и т.д. Таким образом, двадцатая производная определяется мгновенно: – и никаких «километровых простыней»!

Разогреваемся самостоятельно:

Пример 2

Найти функции . Записать производную порядка

Решение и ответ в конце урока.

После бодрящей разминки рассмотрим более сложные примеры, в которых отработаем вышеприведённый алгоритм решения. Тем, кто успел ознакомиться с уроком Предел последовательности , будет чуть легче:

Пример 3

Найти для функции .

Решение : чтобы прояснить ситуацию найдём несколько производных:

Полученные числа перемножать не спешим! ;-)


Пожалуй, хватит. …Даже немного переборщил.

На следующем шаге лучше всего составить формулу «энной» производной (коль скоро, условие этого не требует, то можно обойтись черновиком) . Для этого смотрим на полученные результаты и выявляем закономерности, с которыми получается каждая следующая производная.

Во-первых, они знакочередуются. Знакочередование обеспечивает «мигалка» , и поскольку 1-я производная положительна, то в общую формулу войдёт следующий множитель: . Подойдёт и эквивалентный вариант , но лично я, как оптимист, люблю знак «плюс» =)

Во-вторых, в числителе «накручивается» факториал , причём он «отстаёт» от номера производной на одну единицу:

И в-третьих, в числителе растёт степень «двойки», которая равна номеру производной. То же самое можно сказать о степени знаменателя. Окончательно:

В целях проверки подставим парочку значений «эн», например, и :

Замечательно, теперь допустить ошибку – просто грех:

Ответ :

Более простая функция для самостоятельного решения:

Пример 4

Найти функции .

И задачка позанятнее:

Пример 5

Найти функции .

Ещё раз повторим порядок действий:

1) Сначала находим несколько производных. Чтобы уловить закономерности обычно хватает трёх-четырёх.

2) Затем настоятельно рекомендую составить (хотя бы на черновике) «энную» производную – она гарантированно убережёт от ошибок. Но можно обойтись и без , т.е. мысленно прикинуть и сразу записать, например, двадцатую или восьмую производную. Более того, некоторые люди вообще способны решить рассматриваемые задачи устно. Однако следует помнить, что «быстрые» способы чреваты, и лучше перестраховаться.

3) На заключительном этапе выполняем проверку «энной» производной – берём пару значений «эн» (лучше соседних) и выполняем подстановку. А ещё надёжнее – проверить все найдённые ранее производные. После чего подставляем в нужное значение, например, или и аккуратно причёсываем результат.

Краткое решение 4 и 5-го примеров в конце урока.

В некоторых задачах, во избежание проблем, над функцией нужно немного поколдовать:

Пример 6

Решение : дифференцировать предложенную функцию совсем не хочется, поскольку получится «плохая» дробь, которая сильно затруднит нахождение последующих производных.

В этой связи целесообразно выполнить предварительные преобразования: используем формулу разности квадратов и свойство логарифма :

Совсем другое дело:

И старые подруги:

Думаю, всё просматривается. Обратите внимание, что 2-я дробь знакочередуется, а 1-я – нет. Конструируем производную порядка:

Контроль:

Ну и для красоты вынесем факториал за скобки:

Ответ :

Интересное задание для самостоятельного решения:

Пример 7

Записать формулу производной порядка для функции

А сейчас о незыблемой круговой поруке, которой позавидует даже итальянская мафия:

Пример 8

Дана функция . Найти

Восемнадцатая производная в точке . Всего-то.

Решение : сначала, очевидно, нужно найти . Поехали:

С синуса начинали, к синусу и пришли. Понятно, что при дальнейшем дифференцировании этот цикл будет продолжаться до бесконечности, и возникает следующий вопрос: как лучше «добраться» до восемнадцатой производной?

Способ «любительский»: быстренько записываем справа в столбик номера последующих производных:

Таким образом:

Но это работает, если порядок производной не слишком велик. Если же надо найти, скажем, сотую производную, то следует воспользоваться делимостью на 4 . Сто делится на 4 без остатка, и легко видеть, что таковые числа располагаются в нижней строке, поэтому: .

Кстати, 18-ю производную тоже можно определить из аналогичных соображений:
во второй строке находятся числа, которые делятся на 4 с остатком 2.

Другой, более академичный метод основан на периодичности синуса и формулах приведения . Пользуемся готовой формулой «энной» производной синуса , в которую просто подставляется нужный номер. Например:
(формула приведения ) ;
(формула приведения )

В нашем случае:

(1) Поскольку синус – это периодическая функция с периодом , то у аргумента можно безболезненно «открутить» 4 периода (т.е. ).

Производную порядка от произведения двух функций можно найти по формуле:

В частности:

Специально запоминать ничего не надо, ибо, чем больше формул знаешь – тем меньше понимаешь. Гораздо полезнее ознакомиться с биномом Ньютона , поскольку формула Лейбница очень и очень на него похожа. Ну а те везунчики, которым достанется производная 7-го либо более высоких порядков (что, правда, маловероятно) , будут вынуждены это сделать. Впрочем, когда черёд дойдёт до комбинаторики – то всё равно придётся =)

Найдём третью производную функции . Используем формулу Лейбница:

В данном случае: . Производные легко перещёлкать устно:

Теперь аккуратно и ВНИМАТЕЛЬНО выполняем подстановку и упрощаем результат:

Ответ :

Аналогичное задание для самостоятельного решения:

Пример 11

Найти функции

Если в предыдущем примере решение «в лоб» ещё конкурировало с формулой Лейбница, то здесь оно уже будет действительно неприятным. И ещё неприятнее – в случае более высокого порядка производной:

Пример 12

Найти производную указанного порядка

Решение : первое и существенное замечание – решать вот так , наверное, не нужно =) =)

Запишем функции и найдём их производные до 5-го порядка включительно. Предполагаю, что производные правого столбца стали для вас устными:

В левом же столбце «живые» производные быстро «закончились» и это очень хорошо – в формуле Лейбница обнулятся три слагаемых:

Вновь остановлюсь на дилемме, которая фигурировала в статье о сложных производных : упрощать ли результат? В принципе, можно оставить и так – преподавателю будет даже легче проверять. Но он может потребовать довести решение до ума. С другой стороны, упрощение по собственной инициативе чревато алгебраическими ошибками. Однако у нас есть ответ, полученный «первобытным» способом =) (см. ссылку в начале) , и я надеюсь, он правильный:


Отлично, всё сошлось.

Ответ :

Счастливое задание для самостоятельного решения:

Пример 13

Для функции :
а) найти непосредственным дифференцированием;
б) найти по формуле Лейбница;
в) вычислить .

Нет, я вовсе не садист – пункт «а» здесь достаточно прост =)

А если серьёзно, то «прямое» решение последовательным дифференцированием тоже имеет «право на жизнь» – в ряде случаев его сложность сопоставима со сложностью применения формулы Лейбница. Используйте, если сочтёте целесообразным – это вряд ли будет основанием для незачёта задания.

Краткое решение и ответ в конце урока.

Чтобы поднять заключительный параграф нужно уметь дифференцировать неявные функции :

Производные высших порядков от функций, заданных неявно

Многие из нас потратили долгие часы, дни и недели жизни на изучение окружностей , парабол , гипербол – а иногда это вообще казалось сущим наказанием. Так давайте же отомстим и продифференцируем их как следует!

Начнём со «школьной» параболы в её каноническом положении :

Пример 14

Дано уравнение . Найти .

Решение : первый шаг хорошо знаком:

То, что функция и её производная выражены неявно сути дела не меняет, вторая производная – это производная от 1-й производной:

Однако свои правила игры существуют: производные 2-го и более высоких порядков принято выражать только через «икс» и «игрек» . Поэтому в полученную 2-ю производную подставим :

Третья производная – есть производная от 2-й производной:

Аналогично, подставим :

Ответ :

«Школьная» гипербола в каноническом положении – для самостоятельной работы:

Пример 15

Дано уравнение . Найти .

Повторяю, что 2-ю производную и результат следует выразить только через «икс»/«игрек»!

Краткое решение и ответ в конце урока.

После детских шалостей посмотрим немецкую поpнoгр@фию рассмотрим более взрослые примеры, из которых узнаем ещё один важный приём решения:

Пример 16

Эллипс собственной персоной.

Решение : найдём 1-ю производную:

А теперь остановимся и проанализируем следующий момент: сейчас предстоит дифференцировать дробь, что совсем не радует. В данном случае она, конечно, проста, но в реально встречающихся задачах таких подарков раз два и обчёлся. Существует ли способ избежать нахождения громоздкой производной? Существует! Берём уравнение и используем тот же самый приём, что и при нахождении 1-й производной – «навешиваем» штрихи на обе части:

Вторая производная должна быть выражена только через и , поэтому сейчас (именно сейчас) удобно избавиться от 1-й производной. Для этого в полученное уравнение подставим :

Чтобы избежать лишних технических трудностей, умножим обе части на :

И только на завершающем этапе оформляем дробь:

Теперь смотрим на исходное уравнение и замечаем, что полученный результат поддаётся упрощению:

Ответ :

Как найти значение 2-й производной в какой-либо точке (которая, понятно, принадлежит эллипсу) , например, в точке ? Очень легко! Этот мотив уже встречался на уроке об уравнении нормали : в выражение 2-й производной нужно подставить :

Безусловно, во всех трёх случаях можно получить явно заданные функции и дифференцировать их, но тогда морально настройтесь работать с двумя функциями, которые содержат корни. На мой взгляд, решение удобнее провести «неявным путём».

Заключительный пример для самостоятельного решения:

Пример 17

Найти неявно заданной функции

Приводится формула Лейбница для вычисления n-й производной произведения двух функций. Дано ее доказательство двумя способами. Рассмотрен пример вычисления производной n-го порядка.

Содержание

См. также: Производная произведения двух функций

Формула Лейбница

С помощью формулы Лейбница можно вычислить производную n-го порядка от произведения двух функций. Она имеет следующий вид:
(1) ,
где
- биномиальные коэффициенты.

Биномиальные коэффициенты являются коэффициентами разложения бинома по степеням и :
.
Также число является числом сочетаний из n по k .

Доказательство формулы Лейбница

Применим формулу производной произведения двух функций :
(2) .
Перепишем формулу (2) в следующем виде:
.
То есть мы считаем, что одна функция зависит от переменной x , а другая - от переменной y . В конце расчета мы полагаем . Тогда предыдущую формулу можно записать так:
(3) .
Поскольку производная равна сумме членов, и каждый член является произведением двух функций, то для вычисления производных высших порядков, можно последовательно применять правило (3).

Тогда для производной n-го порядка имеем:

.
Учитывая, что и , мы получаем формулу Лейбница:
(1) .

Доказательство методом индукции

Приведем доказательство формулы Лейбница методом математической индукции.

Еще раз выпишем формулу Лейбница:
(4) .
При n = 1 имеем:
.
Это формула производной произведения двух функций. Она справедлива.

Предположим, что формула (4) справедлива для производной n -го порядка. Докажем, что она справедлива для производной n + 1 -го порядка.

Дифференцируем (4):
;



.
Итак, мы нашли:
(5) .

Подставим в (5) и учтем, что :

.
Отсюда видно, что формула (4) имеет тот же вид и для производной n + 1 -го порядка.

Итак, формула (4) справедлива при n = 1 . Из предположения, что она выполняется, для некоторого числа n = m следует, что она выполняется для n = m + 1 .
Формула Лейбница доказана.

Пример

Вычислить n-ю производную функции
.

Применим формулу Лейбница
(2) .
В нашем случае
;
.


По таблице производных имеем:
.
Применяем свойства тригонометрических функций :
.
Тогда
.
Отсюда видно, что дифференцирование функции синус приводит к ее сдвигу на . Тогда
.

Находим производные от функции .
;
;
;
, .

Поскольку при , то в формуле Лейбница отличны от нуля только первые три члена. Находим биномиальные коэффициенты.
;
.

По формуле Лейбница имеем:

.

См. также:

Решение прикладных задач сводится к вычислению интеграла, но не всегда это возможно сделать точно. Иногда необходимо знать значение определенного интеграла с некоторой степенью точности, к примеру, до тысячной.

Существуют задачи, когда следовало бы найти приближенное значение определенного интеграла с необходимой точностью, тогда применяют численное интегрирование такое, как метод Симпосна, трапеций, прямоугольников. Не все случаи позволяют вычислить его с определенной точностью.

Данная статья рассматривает применение формулы Ньютона-Лейбница. Это необходимо для точного вычисления определенного интеграла. Будут приведены подробные примеры, рассмотрены замены переменной в определенном интеграле и найдем значения определенного интеграла при интегрировании по частям.

Формула Ньютона-Лейбница

Определение 1

Когда функция y = y (x) является непрерывной из отрезка [ a ; b ] ,а F (x) является одной из первообразных функции этого отрезка, тогда формула Ньютона-Лейбница считается справедливой. Запишем ее так ∫ a b f (x) d x = F (b) - F (a) .

Данную формулу считают основной формулой интегрального исчисления.

Чтобы произвести доказательство этой формулы, необходимо использовать понятие интеграла с имеющимся переменным верхним пределом.

Когда функция y = f (x) непрерывна из отрезка [ a ; b ] , тогда значение аргумента x ∈ a ; b , а интеграл имеет вид ∫ a x f (t) d t и считается функцией верхнего предела. Необходимо принять обозначение функции примет вид ∫ a x f (t) d t = Φ (x) , она является непрерывной, причем для нее справедливо неравенство вида ∫ a x f (t) d t " = Φ " (x) = f (x) .

Зафиксируем, что приращении функции Φ (x) соответствует приращению аргумента ∆ x , необходимо воспользоваться пятым основным свойством определенного интеграла и получим

Φ (x + ∆ x) - Φ x = ∫ a x + ∆ x f (t) d t - ∫ a x f (t) d t = = ∫ a x + ∆ x f (t) d t = f (c) · x + ∆ x - x = f (c) · ∆ x

где значение c ∈ x ; x + ∆ x .

Зафиксируем равенство в виде Φ (x + ∆ x) - Φ (x) ∆ x = f (c) . По определению производной функции необходимо переходить к пределу при ∆ x → 0 , тогда получаем формулу вида Φ " (x) = f (x) . Получаем, что Φ (x) является одной из первообразных для функции вида y = f (x) , расположенной на [ a ; b ] . Иначе выражение можно записать

F (x) = Φ (x) + C = ∫ a x f (t) d t + C , где значение C является постоянной.

Произведем вычисление F (a) с использованием первого свойства определенного интеграла. Тогда получаем, что

F (a) = Φ (a) + C = ∫ a a f (t) d t + C = 0 + C = C , отсюда получаем, что C = F (a) . Результат применим при вычислении F (b) и получим:

F (b) = Φ (b) + C = ∫ a b f (t) d t + C = ∫ a b f (t) d t + F (a) , иначе говоря, F (b) = ∫ a b f (t) d t + F (a) . Равенство доказывает формулу Ньютона-Лейбница ∫ a b f (x) d x + F (b) - F (a) .

Приращение функции принимаем как F x a b = F (b) - F (a) . С помощью обозначения формулу Ньютона-Лейбница принимает вид ∫ a b f (x) d x = F x a b = F (b) - F (a) .

Чтобы применить формулу, обязательно необходимо знать одну из первообразных y = F (x) подынтегральной функции y = f (x) из отрезка [ a ; b ] , произвести вычисление приращения первообразной из этого отрезка. Рассмотрим несколько примером вычисления, используя формулу Ньютона-Лейбница.

Пример 1

Произвести вычисление определенного интеграла ∫ 1 3 x 2 d x по формуле Ньютона-Лейбница.

Решение

Рассмотрим, что подынтегральная функция вида y = x 2 является непрерывной из отрезка [ 1 ; 3 ] , тогда и интегрируема на этом отрезке. По таблице неопределенных интегралов видим, что функция y = x 2 имеет множество первообразных для всех действительных значений x , значит, x ∈ 1 ; 3 запишется как F (x) = ∫ x 2 d x = x 3 3 + C . Необходимо взять первообразную с С = 0 , тогда получаем, что F (x) = x 3 3 .

Воспользуемся формулой Ньютона-Лейбница и получим, что вычисление определенного интеграла примет вид ∫ 1 3 x 2 d x = x 3 3 1 3 = 3 3 3 - 1 3 3 = 26 3 .

Ответ: ∫ 1 3 x 2 d x = 26 3

Пример 2

Произвести вычисление определенного интеграла ∫ - 1 2 x · e x 2 + 1 d x по формуле Ньютона-Лейбница.

Решение

Заданная функция непрерывна из отрезка [ - 1 ; 2 ] , значит, на нем интегрируема. Необходимо найти значение неопределенного интеграла ∫ x · e x 2 + 1 d x при помощи метода подведения под знак дифференциала, тогда получаем ∫ x · e x 2 + 1 d x = 1 2 ∫ e x 2 + 1 d (x 2 + 1) = 1 2 e x 2 + 1 + C .

Отсюда имеем множество первообразных функции y = x · e x 2 + 1 , которые действительны для всех x , x ∈ - 1 ; 2 .

Необходимо взять первообразную при С = 0 и применить формулу Ньютона-Лейбница. Тогда получим выражение вида

∫ - 1 2 x · e x 2 + 1 d x = 1 2 e x 2 + 1 - 1 2 = = 1 2 e 2 2 + 1 - 1 2 e (- 1) 2 + 1 = 1 2 e (- 1) 2 + 1 = 1 2 e 2 (e 3 - 1)

Ответ: ∫ - 1 2 x · e x 2 + 1 d x = 1 2 e 2 (e 3 - 1)

Пример 3

Произвести вычисление интегралов ∫ - 4 - 1 2 4 x 3 + 2 x 2 d x и ∫ - 1 1 4 x 3 + 2 x 2 d x .

Решение

Отрезок - 4 ; - 1 2 говорит о том, что функция, находящаяся под знаком интеграла, является непрерывной, значит, она интегрируема. Отсюда найдем множество первообразных функции y = 4 x 3 + 2 x 2 . Получаем, что

∫ 4 x 3 + 2 x 2 d x = 4 ∫ x d x + 2 ∫ x - 2 d x = 2 x 2 - 2 x + C

Необходимо взять первообразную F (x) = 2 x 2 - 2 x , тогда, применив формулу Ньютона-Лейбница, получаем интеграл, который вычисляем:

∫ - 4 - 1 2 4 x 3 + 2 x 2 d x = 2 x 2 - 2 x - 4 - 1 2 = 2 - 1 2 2 - 2 - 1 2 - 2 - 4 2 - 2 - 4 = 1 2 + 4 - 32 - 1 2 = - 28

Производим переход к вычислению второго интеграла.

Из отрезка [ - 1 ; 1 ] имеем, что подынтегральная функция считается неограниченной, потому как lim x → 0 4 x 3 + 2 x 2 = + ∞ , тогда отсюда следует, что необходимым условием интегрируемости из отрезка. Тогда F (x) = 2 x 2 - 2 x не является первообразной для y = 4 x 3 + 2 x 2 из отрезка [ - 1 ; 1 ] , так как точка O принадлежит отрезку, но не входит в область определения. Значит, что имеется определенный интеграл Римана и Ньютона-Лейбница для функции y = 4 x 3 + 2 x 2 из отрезка [ - 1 ; 1 ] .

Ответ: ∫ - 4 - 1 2 4 x 3 + 2 x 2 d x = - 28 , имеется определенный интеграл Римана и Ньютона-Лейбница для функции y = 4 x 3 + 2 x 2 из отрезка [ - 1 ; 1 ] .

Перед использованием формулы Ньютона-Лейбница нужно точно знать о существовании определенного интеграла.

Замена переменной в определенном интеграле

Когда функция y = f (x) является определенной и непрерывной из отрезка [ a ; b ] , тогда имеющееся множество [ a ; b ] считается областью значений функции x = g (z) , определенной на отрезке α ; β с имеющейся непрерывной производной, где g (α) = a и g β = b , отсюда получаем, что ∫ a b f (x) d x = ∫ α β f (g (z)) · g " (z) d z .

Данную формулу применяют тогда, когда нужно вычислять интеграл ∫ a b f (x) d x , где неопределенный интеграл имеет вид ∫ f (x) d x , вычисляем при помощи метода подстановки.

Пример 4

Произвести вычисление определенного интеграла вида ∫ 9 18 1 x 2 x - 9 d x .

Решение

Подынтегральная функция считается непрерывной на отрезке интегрирования, значит определенный интеграл имеет место на существование. Дадим обозначение, что 2 x - 9 = z ⇒ x = g (z) = z 2 + 9 2 . Значение х = 9 , значит, что z = 2 · 9 - 9 = 9 = 3 , а при х = 18 получаем, что z = 2 · 18 - 9 = 27 = 3 3 , тогда g α = g (3) = 9 , g β = g 3 3 = 18 . При подстановке полученных значений в формулу ∫ a b f (x) d x = ∫ α β f (g (z)) · g " (z) d z получаем, что

∫ 9 18 1 x 2 x - 9 d x = ∫ 3 3 3 1 z 2 + 9 2 · z · z 2 + 9 2 " d z = = ∫ 3 3 3 1 z 2 + 9 2 · z · z d z = ∫ 3 3 3 2 z 2 + 9 d z

По таблице неопределенных интегралов имеем, что одна из первообразных функции 2 z 2 + 9 принимает значение 2 3 a r c t g z 3 . Тогда при применении формулы Ньютона-Лейбница получаем, что

∫ 3 3 3 2 z 2 + 9 d z = 2 3 a r c t g z 3 3 3 3 = 2 3 a r c t g 3 3 3 - 2 3 a r c t g 3 3 = 2 3 a r c t g 3 - a r c t g 1 = 2 3 π 3 - π 4 = π 18

Нахождение можно было производить, не используя формулу ∫ a b f (x) d x = ∫ α β f (g (z)) · g " (z) d z .

Если при методе замены использовать интеграл вида ∫ 1 x 2 x - 9 d x , то можно прийти к результату ∫ 1 x 2 x - 9 d x = 2 3 a r c t g 2 x - 9 3 + C .

Отсюда произведем вычисления по формуле Ньютона-Лейбница и вычислим определенный интеграл. Получаем, что

∫ 9 18 2 z 2 + 9 d z = 2 3 a r c t g z 3 9 18 = = 2 3 a r c t g 2 · 18 - 9 3 - a r c t g 2 · 9 - 9 3 = = 2 3 a r c t g 3 - a r c t g 1 = 2 3 π 3 - π 4 = π 18

Результаты совпали.

Ответ: ∫ 9 18 2 x 2 x - 9 d x = π 18

Интегрирование по частям при вычислении определенного интеграла

Если на отрезке [ a ; b ] определены и непрерывны функции u (x) и v (x) , тогда их производные первого порядка v " (x) · u (x) являются интегрируемыми, таким образом из этого отрезка для интегрируемой функции u " (x) · v (x) равенство ∫ a b v " (x) · u (x) d x = (u (x) · v (x)) a b - ∫ a b u " (x) · v (x) d x справедливо.

Формулу можно использовать тогда, необходимо вычислять интеграл ∫ a b f (x) d x , причем ∫ f (x) d x необходимо было искать его при помощи интегрирования по частям.

Пример 5

Произвести вычисление определенного интеграла ∫ - π 2 3 π 2 x · sin x 3 + π 6 d x .

Решение

Функция x · sin x 3 + π 6 интегрируема на отрезке - π 2 ; 3 π 2 , значит она непрерывна.

Пусть u (x) = х, тогда d (v (x)) = v " (x) d x = sin x 3 + π 6 d x , причем d (u (x)) = u " (x) d x = d x , а v (x) = - 3 cos π 3 + π 6 . Из формулы ∫ a b v " (x) · u (x) d x = (u (x) · v (x)) a b - ∫ a b u " (x) · v (x) d x получим, что

∫ - π 2 3 π 2 x · sin x 3 + π 6 d x = - 3 x · cos x 3 + π 6 - π 2 3 π 2 - ∫ - π 2 3 π 2 - 3 cos x 3 + π 6 d x = = - 3 · 3 π 2 · cos π 2 + π 6 - - 3 · - π 2 · cos - π 6 + π 6 + 9 sin x 3 + π 6 - π 2 3 π 2 = 9 π 4 - 3 π 2 + 9 sin π 2 + π 6 - sin - π 6 + π 6 = 9 π 4 - 3 π 2 + 9 3 2 = 3 π 4 + 9 3 2

Решение примера можно выполнить другим образом.

Найти множество первообразных функции x · sin x 3 + π 6 при помощи интегрирования по частям с применением формулы Ньютона-Лейбница:

∫ x · sin x x 3 + π 6 d x = u = x , d v = sin x 3 + π 6 d x ⇒ d u = d x , v = - 3 cos x 3 + π 6 = = - 3 cos x 3 + π 6 + 3 ∫ cos x 3 + π 6 d x = = - 3 x cos x 3 + π 6 + 9 sin x 3 + π 6 + C ⇒ ∫ - π 2 3 π 2 x · sin x 3 + π 6 d x = - 3 cos x 3 + π 6 + 9 sincos x 3 + π 6 - - - 3 · - π 2 · cos - π 6 + π 6 + 9 sin - π 6 + π 6 = = 9 π 4 + 9 3 2 - 3 π 2 - 0 = 3 π 4 + 9 3 2

Ответ: ∫ x · sin x x 3 + π 6 d x = 3 π 4 + 9 3 2

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Поделитесь с друзьями или сохраните для себя:

Загрузка...