Виды уравнений и их решение. Уравнение - что такое? Определение термина, примеры. Соблюдение вашей конфиденциальности на уровне компании

Что такое уравнение?








Тем, кто делает первые шаги в алгебре, конечно, требуется максимально упорядоченная подача материала. Поэтому в нашей статье о том, что такое уравнение, мы не только дадим определение, но и приведём различные классификации уравнений с примерами.

Что такое уравнение: общие понятия

Итак, уравнение — это вид равенства с неизвестным, обозначаемым латинской буквой. При этом числовое значение данной буквы, позволяющее получить верное равенство, называется корнем уравнения.Более подробно об этом вы можете прочитать в нашей статье , мы же продолжим разговор о самих уравнениях. Аргументами уравнения (или переменными) называются неизвестные, а решением уравнения называется нахождение всех его корней либо отсутствия корней.

Виды уравнений

Уравнения подразделяются на две большие группы: алгебраические и трансцендентные.

  • Алгебраическим называется такое уравнение, в котором для нахождения корня уравнения используются только алгебраические действия - 4 арифметических, а также возведение в степень и извлечение натурального корня.
  • Трансцендентным называется уравнение, в котором для нахождения корня используются неалгебраические функции: например, тригонометрические, логарифмические и иные.

Среди алгебраических уравнений выделяют также:

  • целые — с обеими частями, состоящими из целых алгебраических выражений по отношению к неизвестным;
  • дробные — содержащие целые алгебраические выражения в числителе и знаменателе;
  • иррациональные — алгебраические выражения здесь находятся под знаком корня.

Заметим также, что дробные и иррациональные уравнения можно свести к решению целых уравнений.

Трансцендентные уравнения подразделяются на:

  • показательные — это такие уравнения, которые содержат переменную в показателе степени. Они решаются путём перехода к единому основанию или показателю степени, вынесением общего множителя за скобку, разложением на множители и некоторыми другими способами;
  • логарифмические — уравнения с логарифмами, то есть такие уравнения, где неизвестные находятся внутри самих логарифмов. Решать такие уравнения весьма непросто (в отличие от, допустим, большинства алгебраических), поскольку для этого требуется солидная математическая подготовка. Самое важное здесь — перейти от уравнения с логарифмами к уравнению без них, то есть упростить уравнение (такой способ удаления логарифмов называется потенцированием). Разумеется, потенцировать логарифмическое уравнение можно только в том случае, если они имеют тождественные числовые основания и не имеют коэффициентов;
  • тригонометрические — это уравнения с переменных под знаками тригонометрических функций. Их решение требует первоначального освоения тригонометрических функций;
  • смешанные — это дифференцированные уравнения с частями, принадлежащими к различным типам (например, с параболической и эллиптической частями или эллиптической и гиперболической и т.д.).

Что касается классификации по числу неизвестных, то здесь всё просто: различают уравнения с одним, двумя, тремя и так далее неизвестными. Существует также и ещё одна классификация, которая основывается на степени, которая имеется в левой части многочлена. Исходя из этого различают линейные, квадратные и кубические уравнения. Линейные уравнения также могут называться уравнениями 1-й степени, квадратные — 2-й, а кубические, соответственно, 3-й. Ну а теперь приведём примеры уравнений той или иной группы.

Примеры различных типов уравнений

Примеры алгебраических уравнений:

  • ax + b= 0
  • ax 3 + bx 2 + cx+ d= 0
  • ax 4 + bx 3 + cx 2 + bx + a= 0
    (a не равно 0)

Примеры трансцендентных уравнений:

  • cos x = x lg x = x−5 2 x = lgx+x 5 +40

Примеры целых уравнений:

  • (2+x)2 = (2+x)(55x-4) (x2-12x+10)4 = (3x+10)4 (4x2+3x-10)2=9x4

Пример дробных уравнений:

  • 15 x + — = 5x - 17 x

Пример иррациональных уравнений:

  • √2kf(x)=g(x)

Примеры линейных уравнений:

  • 2х+7=0 х - 3 = 2 - 4х 2х+3=5х+5 - 3х - 2

Примеры квадратных уравнений:

  • x 2 +5x−7= 0 3x 2 +5x−7= 0 11x 2 −7x+3 = 0

Примеры кубических уравнений:

  • x 3 -9x 2 -46x+120=0 x 3 - 4x 2 + x + 6 = 0

Примеры показательных уравнений:

  • 5 х+2 = 125 3 х ·2 х = 8 х+3 3 2х +4·3 х -5 = 0

Примеры логарифмических уравнений:

  • log 2 x= 3 log 3 x= -1

Примеры тригонометрических уравнений:

  • 3sin 2 x + 4sin x cosx + cos 2 x = 2 sin(5x+π/4) = ctg(2x-π/3) sinx + cos 2 x + tg 3 x = ctg 4 x

Примеры смешанных уравнений:

  • log х (log 9 (4⋅3 х −3))=1 |5x−8|+|2⋅5x+3|=13

Осталось добавить, что для решения уравнений различных типов применяются самые разные методы. Ну а чтобы решать практически любые уравнения, потребуются знания не только алгебры, но также и тригонометрии, причём нередко знания весьма глубокие.

Математика. Алгебра. Геометрия. Тригонометрия

АЛГЕБРА: Уравнения и сиcтемы уравнений

4.2. Виды уравнений и способы их решений

В случае, когда нужно найти значения переменной, удовлетворяющие обоим заданным уравнениям, говорят, что задана, система уравнений . Для обозначения системы используется фигурная скобка:

Несколько уравнений с одной переменной образуют совокупность уравнений , если ставится задача найти все такие значения переменной, каждое из которых является корнем хотя бы одного из данных уравнений. Для обозначения совокупности используется квадратная скобка:

Уравнения, содержащие переменную под знаком модуля.

Модуль числа а определяется следующим образом:

П р и м е р: Решить уравнение

.

Р е ш е н и е. Если

, то . Можно записать так:

Из уравнения

находим х = -9. Однако при этом значении переменной неравенство не выполняется, значит найденное значение не является корнем данного уравнения. , то и данное уравнение примет вид . Можно записать так:

Из уравнения

находим . Неравенство верно, значит, - корень данного уравнения. .

Уравнения с переменной в знаменателе.

Рассмотрим уравнения вида

. (1)

Решение уравнения вида (1) основано на следующем утверждении: дробь равна 0 тогда и только тогда, когда ее числитель равен 0, а знаменатель отличен от нуля.

В соответствии со сказанным решение уравнения

проводится в два этапа: сначала нужно решить уравнение , а затем выяснить, обращается ли при найденных значениях переменной х знаменатель в 0. Если q(x) ¹ 0, то найденный корень уравнения является и корнем уравнения (1); если q(x) = 0, то полученный корень уравнения является и корнем уравнения (1). Получается система:

Областью определения уравнения

f(x) = g(x)
называют множество всех тех значений переменной х , при которых и выражение f(x) , и выражение g(x) имеют смысл.

Если в процессе преобразований уравнения его область определения расширилась, то могут появиться посторонние корни. Поэтому все найденные значения переменной надо проверить подстановкой в исходное уравнение или с помощью области определения исходного уравнения.

Рациональные уравнения.

Уравнение

f(x) = g(x) называется рациональным , если f(x) и g(x) -рациональные выражения. При этом если f(x) и g(x) - целые выражения, то уравнение называют целым ; если же хотя бы одно из выражений f(x), g(x) является дробным, то рациональное уравнение f(x) = g(x) называется дробным .

Чтобы решить рациональное уравнение, нужно:

  1. найти общий знаменатель всех имеющихся дробей;
  2. заменить данное уравнение целым, умножив обе его части на общий знаменатель;
  3. Решить полученное целое уравнение;
  4. Исключить из его корней те, которые обращают в ноль общий знаменатель.

Решение уравнения

p(x) = 0 методом разложения на множители .
p(x) удается разложить на множители: , тогда уравнение принимает вид . Если а - корень уравнения , то , следовательно хотя бы одно из чисел равно 0.

Верно и обратное: если х

= а - корень хотя бы одного из уравнений , , , то а - корень уравнения . Т. е.

Решение уравнений

методом введения новой переменной .

Суть метода поясним на примере.

П р и м е р: Решить уравнение

.

Р е ш е н и е. Положим

, получим уравнение , откуда находим . Задача сводится к решению совокупности уравнений

Û

Первое квадратное уравнение не имеет действительных корней, так его дискриминант отрицателен. Из второго находим

. Это корни заданного уравнения.

Биквадратным называется уравнение вида

, где а ¹ 0. Биквадратное уравнение решается методом введения новой переменной: положив , придем к квадратному уравнению .

Иррациональные уравнения.

Иррациональным

называется уравнение, в котором переменная содержится под знаком корня или под знаком возведения в дробную степень. Одним из методов решения таких уравнений является метод возведения обеих частей уравнения в одну и ту же степень:

А) преобразуем заданное иррациональное уравнение к виду :

;

Б) возводим обе части полученного уравнения в

n - ую степень :

;

В) учитывая, что

, получаем уравнение

f(x) = g(x);

) решаем уравнение и делаем проверку, так как возведение обеих частей уравнения в четную степень может привести к появлению посторонних корней. Эта проверка осуществляется с помощью подстановки найденных значений переменной в исходное уравнение.

Copyright © 2005-2013 Xenoid v2.0

Использование материалов сайта возможно при условии указания активной ссылки

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Виды алгебраических уравнений и способы их решения

Для учащихся, интересующихся математикой, при решении алгебраических уравнений высших степеней эффективным методом быстрого нахождения корней, деление с остатком на двучлен х –  или на ах + b , является схема Горнера.

Рассмотрим схему Горнера.

Обозначим неполное частное при делении Р(х) на х –  через

Q (x ) = b 0 x n -1 + b 1 x n -2 + … + b n -1 , а остаток через b n .

Так как Р(х) = Q (x )(х– ) + b n , то имеет место равенство

а 0 x n + а 1 x n -1 + … + а n = (b 0 x n -1 + b 1 x n -2 + … + b n -1)(х– ) + b n

Раскроем в правой части скобки и сравним коэффициенты при одинаковых степенях х слева и справа. Получим, что а 0 = b 0 и при 1  k  n имеют место соотношения а k = b k -  b k -1 . Отсюда следует, что b 0 = а 0 и b k = а k +  b k -1 , 1  k  n .

Вычисление коэффициентов многочлена Q (x ) и остатка b n запишем в виде таблицы:

а 0

а 1

а 2

а n-1

а n

b 0 = а 0

b 1 = а 1 +  b 0

b 2 = а 2 +  b 1

b n-1 = а n-1 +  b n-2

b n = а n +  b n-1

Пример 1. Разделить многочлен 2x 4 – 7x 3 – 3х 2 + 5x – 1 на х + 1.

Решение. Используем схему Горнера.

При делении 2x 4 – 7x 3 – 3х 2 + 5x – 1 на х + 1 получим 2x 3 – 9х 2 + 6x – 1

Ответ: 2x 3 – 9х 2 + 6x – 1

Пример 2. Вычислить Р(3), где Р(х) = 4x 5 – 7x 4 + 5х 3 – 2х + 1

Решение. Используя теорему Безу и схему Горнера, получим:

Ответ: Р(3) = 535

Упражнение

    Используя схему Горнера, разделить многочлен

4x 3 – x 5 + 132 – 8х 2 на х + 2;

2) Разделить многочлен

2x 2 – 3x 3 – х + х 5 + 1 на х + 1;

3) Найти значение многочлена Р 5 (х) = 2х 5 – 4х 4 – х 2 + 1 при х = 7.

1.1. Отыскание рациональных корней уравнений с целыми коэффициентами

Способ отыскания рациональных корней алгебраического уравнения с целыми коэффициентами дается следующей теоремой.

Теорема: Если уравнение с целыми коэффициентами имеет рациональные корни, то они есть частное от деления делителя свободного члена на делитель старшего коэффициента.

Доказательство: а 0 x n + а 1 x n -1 + … + а n = 0

Пусть х = р/q – рациональный корень, q , p – взаимнопростые.

Подставив дробь р/q в уравнение, и освободившись от знаменателя, получим

а 0 р n + а 1 р n -1 q + … + а n -1 pq n -1 + a n q n = 0 (1)

Перепишем (1) двумя способами:

a n q n = р(– а 0 р n -1 – а 1 р n -2 q – … – а n -1 q n -1) (2)

а 0 р n = q (– а 1 р n -1 –… – а n -1 рq n -2 – а n q n -1) (3)

Из равенства (2) следует, что a n q n делится на р, и т.к. q n и р взаимно просты, то a n делится на р. Аналогично из равенства (3) следует, что а 0 делится на q . Теорема доказана.

Пример 1. Решить уравнение 2x 3 – 7x 2 + 5х – 1 = 0.

Решение. Целых корней уравнение не имеет, находим рациональные корни уравнения. Пусть p /q несократимая дробь является корнем уравнения, тогда р находим среди делителей свободного члена, т.е. среди чисел  1, а q среди положительных делителей старшего коэффициента: 1; 2.

Т.е. рациональные корни уравнения надо искать среди чисел  1,  1/2, обозначим Р 3 (х) = 2x 3 – 7x 2 + 5х – 1, Р 3 (1)  0, Р 3 (–1)  0,

Р 3 (1/2) = 2/8 – 7/4 + 5/2 – 1 = 0, 1/2 – корень уравнения.

2x 3 – 7x 2 + 5х – 1 = 2x 3 – x 2 – 6 x 2 + 3х + 2х– 1 = 0.

Получим: x 2 (2х – 1) – 3x (2х – 1)+ (2х– 1) = 0; (2х– 1)(x 2 – 3x + 1) = 0.

Приравнивая второй множитель к нулю, и решив уравнение, получим

Ответ:
,

Упражнения

Решить уравнения:

    6x 3 – 25x 2 + 3х + 4 = 0;

    6x 4 – 7x 3 – 6х 2 + 2х + 1 = 0;

    3x 4 – 8x 3 – 2х 2 + 7х – 1 = 0;

1.2. Возвратные уравнения и методы решения

Определение. Уравнение с целыми степенями относительно неизвестного называется возвратным, если его коэффициенты, равноотстоящие от концов левой части, равны между собой, т.е. уравнение вида

аx n + bx n -1 + cx n -2 + … + cx 2 + bx + а = 0

Возвратное уравнение нечетной степени

аx 2 n +1 + bx 2 n + cx 2 n -1 + … + cx 2 + bx + а = 0

всегда имеет корень х = – 1. Поэтому оно эквивалентно объединению уравнению х + 1 = 0 и  х 2 n +  x 2 n -1 + … +  x +  = 0. Последнее уравнение является возвратным уравнением четной степени. Таким образом, решение возвратных уравнений любой степени сводится к решению возвратного уравнения четной степени.

Как же его решать? Пусть дано возвратное уравнение четной степени

аx 2 n + bx 2 n -1 + … + dx n +1 + ex n + dx n -1 + … + bx + а = 0

Заметим, что х = 0 не является корнем уравнения. Тогда делим уравнение на х n , получим

аx n + bx n -1 + … + dx + e + dx -1 + … + bx 1- n + аx -n = 0

Группируем попарно члены левой части

а(x n + x - n ) + b (x n -1 + x -(n -1) + … + d(x + x -1 ) + e = 0

Делаем замену х + х -1 = у. После подстановки выражений х 2 + х -2 = у 2 – 2;

х 3 + х -3 = у 3 – 3у; х 4 + х -4 = у 4 – 4у + 2 в уравнение получим уравнение относительно у Ау n + By n -1 +Cy n -2 + … + Ey + D = 0.

Для решения этого уравнения нужно решить несколько квадратных уравнений вида х + х -1 = у k , где к = 1, 2, … n . Таким образом, получим корни исходного уравнения.

Пример 1. Решить уравнение х 7 + х 6 – 5х 5 – 13х 4 – 13х 3 – 5х 2 + 2х + 1 = 0.

Решение. х = – 1 является корнем уравнения. Применим схему Горнера.

Наше уравнение примет вид:

(х + 1)(х 6 + х 5 – 6х 4 – 7х 3 – 6х 2 + х + 1) = 0

1) х + 1 = 0, х = -1;

2) х 6 + х 5 – 6х 4 – 7х 3 – 6х 2 + х + 1 = 0 | : x 3 0; х 3 + х 2 – 6х – 7 – 6/х + 1/х 2 + 1/х 3 =0.

Группируя, получим: .

Вводим замену:
;
;
.

Получим относительно у уравнение: у 3 – 3у + у 2 – 2 – 6у – 7 = 0;

у 3 + у 2 – 9у– 9 = 0; у 2 (у + 1) – 9(у + 1) = 0; (у + 1)(у 2 – 9); у 1 = -1, у 2,3 =  3.

Решая уравнения
,
,
,

получим корни:
,
,
,

Ответ: х 1 = -1,
,

Упражнения

Решить уравнения.

    2х 5 + 5х 4 – 13х 3 – 13х 2 + 5х + 2 = 0;

    2х 4 + 3х 3 – 16х 2 + 3х + 2 = 0;

    15х 5 + 34х 4 + 15х 3 – 15х 2 – 34х – 15 = 0.

1.3. Метод замены переменной при решении уравнений

Метод замены переменной - самый распространенный метод. Искусство производить замену переменной заключается в том, чтобы увидеть, какая замена будет более рациональна и быстрее приведет к успеху.

Если дано уравнение

F (f (x )) = 0, (1)

то заменой неизвестной у = f (x ) оно сначала сводится к уравнению

F (у) = 0, (2)

а потом после нахождения всех решений уравнения (2) у 1 , у 2 , …, y n , … сводится к решению совокупности уравнений f (x ) =у 1, f (x ) = у 2 ,…, f (x ) = у 2 , …

Основными способами реализации метода замены переменной являются:

    использование основного свойства дроби;

    выделение квадрата двучлена;

    переход к системе уравнений;

    раскрытие скобок парами;

    раскрытие скобок парами и деление обеих частей уравнения;

    понижение степени уравнения;

    двойная замена.

1.3.1. Понижение степени уравнения

Решить уравнение (х 2 + х + 2)(х 2 + х + 3) = 6 (3)

Решение. Обозначим х 2 + х + 2 = у, тогда полечим у(у+1)=6, решая последнее, получим у 1 = 2, у 2 = -3. Данное уравнение (3) равносильно совокупности уравнений х 2 + х + 2 = 2

х 2 + х + 2 = -3

Решая первое, получим х 1 = 0, х 2 = -1. Решая второе, получим
,

Ответ: х 1 = 0, х 2 = -1,

1.3.2. Уравнение четвертой степени вида (х + а)(х + b )(x + c )(x + d ) = m , где а + b = c + d , или а + с = b + d , или а + d = b + c .

Пример. Решить уравнение (х - 1)(х - 7)(x -4)(x + 2) = 40

Решение. – 1- 4 = - 7 + 2, - 5 = - 5, перемножив эти пары скобок, получим уравнение (х 2 - 5х - 14)(х 2 - 5х + 4) = 40

Введем замену: х 2 - 5х – 14 = у, получим уравнение у(у + 18) = 40, у 2 + 18у = 40, у 2 + 18у – 40 = 0. у 1 = -20, у 2 = 2. Возвращаясь к исходной переменной, решим совокупность уравнений:

Х 2 - 5х – 14 = - 20 х 1 = 2; х 2 = 3

х 2 - 5х – 14 = 2 х 3,4 =

Ответ: х 1 = 2; х 2 = 3 х 3,4 =

1.3.3. Уравнение вида (х + а)(х + b )(x + c )(x + d ) = Ех 2 ,

где ab = cd , или ac =bd , или ad = bc . Раскрываем скобки парами и делим обе части на х 2  0.

Пример. (х - 1)(х - 2)(x - 8)(x - 4) = 4х 2

Решение. Произведение чисел, стоящих в первой и третьей, во второй и четвертой скобках, равны, т.е. – 8 (- 1) = (- 2)(- 4). Перемножим указанные пары скобок и запишем уравнение (х 2 - 9х + 8)(х 2 - 6х + 8) = 4х 2 .

Поскольку х = 0 не является корнем уравнения, разделим обе части уравнения на х 2 0, получим:
, замена:
, исходное уравнение примет вид:
t (t +3) =4, t 2 + 3 t =4, t 2 + 3 t – 4=0, t 1 =1, t 2 = - 4.

Вернемся к исходной переменной:

х 2 - 10х + 8 = 0

х 2 - 5х + 8 = 0

Первое уравнение решаем, получим х 1,2 = 5

Второе уравнение не имеет корней.

Ответ: х 1,2 = 5

1.3.4. Уравнение четвертой вида (ах 2 + b 1 х + c )(a х 2 + b 2 x + c ) = A х 2

Уравнение (ах 2 + b 1 х+ c )(a х 2 + b 2 x + c ) = A х 2 , где с 0, А 2
, которое после замены неизвестной
перепишется в виде квадратного и легко решается.

Пример. (х 2 + х+ 2)(х 2 + 2x + 2) = 2х 2

Решение. Легко видно, что х = 0 не является корнем данного уравнения, разделив данное уравнение на х 2 , получим уравнение

замена
, получим уравнение (у+1)(у+2) = 2, решив его, имеем корни у 1 = 0; у 2 = - 3, следовательно исходное уравнение равносильно совокупности уравнений

решая, получим х 1 = -1; х 2 = -2.

Ответ: х 1 = -1; х 2 = -2

1.3.5. Уравнение вида: a (cx 2 + p 1 x + q ) 2 + b (cx 2 + p 2 x + q ) 2 = Ax 2

Уравнение a (cx 2 + p 1 x + q ) 2 + b (cx 2 + p 2 x + q ) 2 = Ax 2 , где a , b , c , q , A таковы, что q 0, A 0, c 0, a 0, b 0, не имеет корня х = 0, поэтому, разделив уравнение на х 2 , получим равносильное ему уравнение
, которое после замены
перепишется в виде квадратного уравнения, которое легко решается.
+ 1)( x 2 – 14x + 15 = 0

x 2 – 7 x + 15 = 0

Ответ:


В некоторых задачах физики непосредственную связь между величинами, описывающими процесс, установить не удается. Но существует возможность получить равенство, содержащее производные исследуемых функций. Так возникают дифференциальные уравнения и потребность их решения для нахождения неизвестной функции.

Эта статья предназначена тем, кто столкнулся с задачей решения дифференциального уравнения, в котором неизвестная функция является функцией одной переменной. Теория построена так, что с нулевым представлением о дифференциальных уравнениях, вы сможете справиться со своей задачей.

Каждому виду дифференциальных уравнений поставлен в соответствие метод решения с подробными пояснениями и решениями характерных примеров и задач. Вам остается лишь определить вид дифференциального уравнения Вашей задачи, найти подобный разобранный пример и провести аналогичные действия.

Для успешного решения дифференциальных уравнений с Вашей стороны также потребуется умение находить множества первообразных (неопределенные интегралы) различных функций. При необходимости рекомендуем обращаться к разделу .

Сначала рассмотрим виды обыкновенных дифференциальных уравнений первого порядка, которые могут быть разрешены относительно производной, далее перейдем к ОДУ второго порядка, следом остановимся на уравнениях высших порядков и закончим системами дифференциальных уравнений.

Напомним, что , если y является функцией аргумента x .

Дифференциальные уравнения первого порядка.

    Простейшие дифференциальные уравнения первого порядка вида .

    Запишем несколько примеров таких ДУ .

    Дифференциальные уравнения можно разрешить относительно производной, произведя деление обеих частей равенства на f(x) . В этом случае приходим к уравнению , которое будет эквивалентно исходному при f(x) ≠ 0 . Примерами таких ОДУ являются .

    Если существуют значения аргумента x , при которых функции f(x) и g(x) одновременно обращаются в ноль, то появляются дополнительные решения. Дополнительными решениями уравнения при данных x являются любые функции, определенные для этих значений аргумента. В качестве примеров таких дифференциальных уравнений можно привести .

Дифференциальные уравнения второго порядка.

    Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

    ЛОДУ с постоянными коэффициентами является очень распространенным видом дифференциальных уравнений. Их решение не представляет особой сложности. Сначала отыскиваются корни характеристического уравнения . При различных p и q возможны три случая: корни характеристического уравнения могут быть действительными и различающимися , действительными и совпадающими или комплексно сопряженными . В зависимости от значений корней характеристического уравнения, записывается общее решение дифференциального уравнения как , или , или соответственно.

    Для примера рассмотрим линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами . Корнями его характеристического уравнения являются k 1 = -3 и k 2 = 0 . Корни действительные и различные, следовательно, общее решение ЛОДУ с постоянными коэффициентами имеет вид

    Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

    Общее решение ЛНДУ второго порядка с постоянными коэффициентами y ищется в виде суммы общего решения соответствующего ЛОДУ и частного решения исходного неоднородного уравнения, то есть, . Нахождению общего решения однородного дифференциального уравнения с постоянными коэффициентами , посвящен предыдущий пункт. А частное решение определяется либо методом неопределенных коэффициентов при определенном виде функции f(x) , стоящей в правой части исходного уравнения, либо методом вариации произвольных постоянных.

    В качестве примеров ЛНДУ второго порядка с постоянными коэффициентами приведем

    Разобраться в теории и ознакомиться с подробными решениями примеров мы Вам предлагаем на странице линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

    Линейные однородные дифференциальные уравнения (ЛОДУ) и линейные неоднородные дифференциальные уравнения (ЛНДУ) второго порядка .

    Частным случаем дифференциальных уравнений этого вида являются ЛОДУ и ЛНДУ с постоянными коэффициентами.

    Общее решение ЛОДУ на некотором отрезке представляется линейной комбинацией двух линейно независимых частных решений y 1 и y 2 этого уравнения, то есть, .

    Главная сложность заключается именно в нахождении линейно независимых частных решений дифференциального уравнения этого типа. Обычно, частные решения выбираются из следующих систем линейно независимых функций:

    Однако, далеко не всегда частные решения представляются в таком виде.

    Примером ЛОДУ является .

    Общее решение ЛНДУ ищется в виде , где - общее решение соответствующего ЛОДУ, а - частное решение исходного дифференциального уравнения. О нахождении мы только что говорили, а можно определить, пользуясь методом вариации произвольных постоянных.

    В качестве примера ЛНДУ можно привести .

Дифференциальные уравнения высших порядков.

    Дифференциальные уравнения, допускающие понижение порядка.

    Порядок дифференциального уравнения , которое не содержит искомой функции и ее производных до k-1 порядка, может быть понижен до n-k заменой .

    В этом случае , и исходное дифференциальное уравнение сведется к . После нахождения его решения p(x) останется вернуться к замене и определить неизвестную функцию y .

    Например, дифференциальное уравнение после замены станет уравнением с разделяющимися переменными , и его порядок с третьего понизится до первого.

Поделитесь с друзьями или сохраните для себя:

Загрузка...