Затухающие колебания. Декремент затухания. Логарифмический декремент затухания. Вынужденные колебания. Резонанс Чему равен период затухающих колебаний

Причина затухания заключается в том, что во всякой колебательной системе, кроме возвращающей силы, всегда действуют разного рода , сопротивление воздуха

и т. п., которые тормозят движение. При каждом размахе часть расходуется на работу против сил трения. В конечном итоге на эту работу уходит весь запас энергии, сообщенный колебательной системе первоначально.

Рассматривая , мы имели дело с идеальными, строго периодическими собственными колебаниями. Описывая при помощи такой модели реальные колебания, мы сознательно допускаем неточность в описании. Однако подобное упрощение является пригодным в силу того, что у многих колебательных систем затухания колебаний, вызванные трением, действительно малы: система успевает совершить много колебаний прежде, чем их уменьшится заметным образом.

Графики затухающих колебаний

При наличии затухания собственное колебание (рис.1) перестает быть гармоническим. Более того, затухающее колебание перестает быть периодическим процессом — трение влияет не только на амплитуду колебаний (то есть является причиной затухания), но и на продолжительность размахов. С увеличением трения время, необходимое системе для совершения одного полного колебания, увеличивается. График затухающих колебаний представлен на рис. 2.

Рис.1. График свободных гармонических колебаний


Рис.2. График затухающих колебаний

Характерной чертой колебательных систем является то, что небольшое трение влияет на период колебаний в гораздо меньшей степени, чем на амплитуду. Это обстоятельство сыграло огромную роль в усовершенствовании часов. Первые часы с построил голландский физик и математик Христиан Гюйгенс в 1673 г. Этот год можно считать датой рождения современных часовых механизмов. Ход часов с маятником мало чувствителен к изменениям, обусловленным трением, которые в общем случае зависят от многих факторов, в то время как скорость хода предшествующих безмаятниковых часов очень сильно зависела от трения.

На практике возникает потребность как в уменьшении, так и в увеличении затухания колебаний. К примеру, при конструировании часовых механизмов стремятся уменьшить затухание колебаний балансира часов. Для этого ось балансира снабжают острыми наконечниками, которые упираются в хорошо отполированные конические подпятники, выполненные из твердого камня (агата или рубина). Наоборот, во многих измерительных приборах очень желательно, чтобы подвижная часть устройства устанавливалась в процессе измерений быстро, но совершая большого числа колебаний. Для увеличения затухания в этом случае применяют различные демпферы – устройства, увеличивающие трение и, в общем случае, потерю энергии.

1.21. 3АТУХАЮЩИЕ, ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ

Дифференциальное уравнение затухающих колебаний и его решение. Коэффициент затухания. Логарифмический дек ремент затухания. Добротность колеба тельной системы. Апериодический процесс. Дифференциальное уравнение вынужденных колебаний и его решение. Амплитуда и фаза вынужденных колебаний. Процесс установления колебаний. Случай резонанса. Автоколебания.

Затуханием колебаний называется постепенное уменьшение амплитуды колебаний с течением времени, обусловленное потерей энергии колебательной системой.

Собственные колебания без затухания – это идеализация. Причины затухания могут быть разные. В механической системе к затуханию колебаний приводит наличие трения. Когда израсходуется вся энергия, запасенная в колебательной системе, колебания прекратятся. Поэтому амплитуда затухающих колебаний уменьшается, пока не станет равной нулю.

Затухающие колебания, как и собственные, в системах, разных по своей природе, можно рассматривать с единой точки зрения – общих признаков. Однако, такие характеристики, как амплитуда и период, требуют переопределения, а другие – дополнения и уточнения по сравнению с такими же признаками для собственных незатухающих колебаний. Общие признаки и понятия затухающих колебаний следующие:

    Дифференциальное уравнение должно быть получено с учетом убывания в процессе колебаний колебательной энергии.

    Уравнение колебаний – решение дифференциального уравнения.

    Амплитуда затухающих колебаний зависит от времени.

    Частота и период зависят от степени затухания колебаний.

    Фаза и начальная фаза имеют тот же смысл, что и для незатухающих колебаний.

Механические затухающие колебания.

Механическая система : пружинный маятник с учетом сил трения.

Силы, действующие на маятник :

Упругая сила. , где k – коэффициент жесткости пружины, х – смещение маятника от положения равновесия.

Сила сопротивления . Рассмотрим силу сопротивления, пропорциональную скорости v движения (такая зависимость характерна для большого класса сил сопротивления): . Знак “минус” показывает, что направление силы сопротивления противоположно направлению скорости движения тела. Коэффициент сопротивления r численно равен силе сопротивления, возникающей при единичной скорости движения тела:

Закон движения пружинного маятника – это второй закон Ньютона:

ma = F упр. + F сопр.

Учитывая, что и , запишем второй закон Ньютона в виде:

. (21.1)

Разделив все члены уравнения на m, перенеся их все в правую часть, получим дифференциальное уравнение затухающих колебаний:

Обозначим , где β коэффициент затухания , , где ω 0 – частота незатухающих свободных колебаний в отсутствии потерь энергии в колебательной системе.

В новых обозначениях дифференциальное уравнение затухающих колебаний имеет вид:

. (21.2)

Это линейное дифференциальное уравнение второго порядка.

Это линейное дифференциальное уравнение решается заменой переменных. Представим функцию х, зависящую от времени t, в виде:

.

Найдем первую и вторую производную этой функции от времени, учитывая, что функция z также является функцией времени:

, .

Подставим выражения в дифференциальное уравнение:

Приведем подобные члены в уравнении и сократим каждый член на , получим уравнение:

.

Обозначим величину .

Решением уравнения являются функции , .

Возвращаясь к переменной х, получим формулы уравнений затухающих колебаний:

Таким образом, уравнение затухающих колебаний есть решение дифференциального уравнения (21.2):

Частота затухающих колебаний :

(физический смысл имеет только вещественный корень, поэтому ).

Период затухающих колебаний :

(21.5)

Смысл, который вкладывался в понятие периода для незатухающих колебаний, не подходит для затухающих колебаний, так как колебательная система никогда не возвращается в исходное состояние из-за потерь колебательной энергии. При наличии трения колебания идут медленнее: .

Периодом затухающих колебаний называется минимальный промежуток времени, за который система проходит дважды положение равновесия в одном направлении.

Для механической системы пружинного маятника имеем:

, .

Амплитуда затухающих колебаний :

Для пружинного маятника .

Амплитуда затухающих колебаний – величина не постоянная, а изменяющаяся со временем тем быстрее, чем больше коэффициент β. Поэтому определение для амплитуды, данное ранее для незатухающих свободных колебаний, для затухающих колебаний надо изменить.

При небольших затуханиях амплитудой затухающих колебаний называется наибольшее отклонение от положения равновесия за период.

Графики зависимости смещения от времени и амплитуды от времени представлены на Рисунках 21.1 и 21.2.

Рисунок 21.1 – Зависимость смещения от времени для затухающих колебаний.

Рисунок 21.2 – Зависимости амплитуды от времени для затухающих колебаний

Характеристики затухающих колебаний.

1. Коэффициент затухания β .

Изменение амплитуды затухающих колебаний происходит по экспоненциальному закону:

Пусть за время τ амплитуда колебаний уменьшится в “e ” раз (“е” – основание натурального логарифма, е ≈ 2,718). Тогда, с одной стороны, , а с другой стороны, расписав амплитуды А зат. (t) и А зат. (t+τ), имеем . Из этих соотношений следует βτ = 1, отсюда .

Промежуток времени τ , за который амплитуда уменьшается в “е” раз, называется временем релаксации.

Коэффициент затухания β – величина, обратно пропорциональная времени релаксации.

2. Логарифмический декремент затухания δ - физическая величина, численно равная натуральному логарифму отношения двух последовательных амплитуд, отстоящих по времени на период.

Если затухание невелико, т.е. величина β мала, то амплитуда незначительно изменяется за период, и логарифмический декремент можно определить так:

,

где А зат. (t) и А зат. (t+NT) – амплитуды колебаний в момент времени е и через N периодов, т.е.в момент времени (t + NT).

3. Добротность Q колебательной системы – безразмерная физическая величина, равная произведению величины (2π) νа отношение энергии W(t) системы в произвольный момент времени к убыли энергии за один период затухающих колебаний:

.

Так как энергия пропорциональна квадрату амплитуды, то

При малых значениях логарифмического декремента δ добротность колебательной системы равна

,

где N e – число колебаний, за которое амплитуда уменьшается в “е” раз.

Так, добротность пружинного маятника - .Чем больше добротность колебательной системы, тем меньше затухание, тем дольше будет длиться периодический процесс в такой системе. Добротность колебательной системы - безразмерная величина, которая характеризует диссипацию энергии во времени.

4. При увеличении коэффициента β, частота затухающих колебаний уменьшается, а период увеличивается. При ω 0 = β частота затухающих колебаний становится равной нулю ω зат. = 0, а Т зат. = ∞. При этом колебания теряют периодический характер и называются апериодическими.

При ω 0 = β параметры системы, ответственные за убывание колебательной энергии, принимают значения, называемые критическими . Для пружинного маятника условие ω 0 = β запишется так:, откуда найдем величину критического коэффициента сопротивления:

.

Рис. 21.3. Зависимсть амплитуды апериодических колебаний от времени

Вынужденные колебания.

Все реальные колебания являются затухающими. Чтобы реальные колебания происходили достаточно долго нужно периодически пополнять энергию колебательной системы, действуя на нее внешней периодически изменяющейся силой

Рассмотрим явление колебаний, если внешняя (вынуждающая) сила изменяется в зависимости от времени по гармоническому закону. При этом в системах возникнут колебания, характер которых в той или иной мере повторит характер вынуждающей силы. Такие колебания называются вынужденными .

Общие признаки вынужденных механических колебаний.

1. Рассмотрим вынужденные механические колебаний пружинного маятника, на который действует внешняя (вынуждающая ) периодическая сила . Силы, которые действуют на маятник, однажды выведенный из положения равновесия, развиваются в самой колебательной системе. Это сила упругости и сила сопротивления .

Закон движения (второй закон Ньютона) запишется следующим образом:

(21.6)

Разделим обе части уравнения на m, учтем, что , и получим дифференциальное уравнение вынужденных колебаний:

Обозначим (β коэффициент затухания ), (ω 0 – частота незатухающих свободных колебаний), сила, действующая на единицу массы. В этих обозначениях дифференциальное уравнение вынужденных колебаний примет вид:

(21.7)

Это дифференциальное уравнение второго порядка с правой частью, отличной от нуля. Решение такого уравнения есть сумма двух решений

.

– общее решение однородного дифференциального уравнения, т.е. дифференциального уравнения без правой части, когда она равна нулю. Такое решение нам известно – это уравнение затухающих колебаний, записанное с точностью до постоянной, значение которой определяется начальными условиями колебательной системы:

Мы обсуждали ранее, что решение может быть записано через функции синуса.

Если рассматривать процесс колебаний маятника через достаточно большой промежуток времени Δt после включения вынуждающей силы (Рисунок 21.2), то затухающие колебания в системе практически прекратятся. И тогда решением дифференциального уравнения с правой частью будет решение .

Решение - это частное решение неоднородного дифференциального уравнения, т.е. уравнения с правой частью. Из теории дифференциальных уравнений известно, что при правой части, изменяющейся по гармоническому закону, решение будет гармонической функцией (sin или cos) с частотой изменения, соответствующей частоте Ω изменения правой части:

где А ампл. – амплитуда вынужденных колебаний, φ 0 –сдвиг фаз , т.е. разность фаз между фазой вынуждающей силы и фазой вынужденных колебаний. И амплитуда А ампл. , и сдвиг фаз φ 0 зависят от параметров системы (β, ω 0) и от частоты вынуждающей силы Ω.

Период вынужденных колебаний равен (21.9)

График вынужденных колебаний на Рисунке 4.1.

Рис.21.3. График вынужденных колебаний

Установившиеся вынужденные колебания являются так же гармоническими.

Зависимости амплитуды вынужденных колебаний и сдвига фаз от частоты внешнего воздействия. Резонанс.

1. Вернемся к механической системе пружинного маятника, на который действует внешняя сила, изменяющаяся по гармоническому закону. Для такой системы дифференциальное уравнение и его решение соответственно имеют вид:

, .

Проанализируем зависимость амплитуды колебаний и сдвига фаз от частоты внешней вынуждающей силы, для этого найдем первую и вторую производную от х и подставим в дифференциальное уравнение.

Воспользуемся методом векторной диаграммы. Из уравнения видно, что сумма трех колебаний в левой части уравнения (Рисунок 4.1) должна быть равна колебанию в правой части. Векторная диаграмма выполнена для произвольного момента времени t. Из нее можно определить .

Рисунок 21.4.

, (21.10)

. (21.11)

Учитывая значение , ,, получим формулы для φ 0 и А ампл. механической системы:

,

.

2. Исследуем зависимость амплитуды вынужденных колебаний от частоты вынуждающей силы и величины силы сопротивления в колеблющейся механической системе, по этим данным построим график . Результаты исследования отражены в Рисунке 21.5, по ним видно, что при некоторой частоте вынуждающей силы амплитуда колебаний резко возрастает. И это возрастание тем больше, чем меньше коэффициент затухания β. При амплитуда колебаний становится бесконечно большой .

Явление резкого возрастания амплитуды вынужденных колебаний при частоте вынуждающей силы, равной , называется резонансом.

(21.12)

Кривые на Рисунке 21.5 отражают зависимость и называются амплитудными резонансными кривыми .

Рисунок 21.5 – Графики зависимости амплитуды вынужденных колебаний от частоты вынуждающей силы.

Амплитуда резогансных колебаний примет вид:

Вынужденные колебания – это незатухающие колебания. Неизбежные потери энергии на трение компенсируются подводом энергии от внешнего источника периодически действующей силы. Существуют системы, в которых незатухающие колебания возникают не за счет периодического внешнего воздействия, а в результате имеющейся у таких систем способности самой регулировать поступление энергии от постоянного источника. Такие системы называются автоколебательными , а процесс незатухающих колебаний в таких системах – автоколебаниями .

В автоколебательной системе можно выделить три характерных элемента – колебательная система, источник энергии и устройство обратной связи между колебательной системой и источником. В качестве колебательной системы может быть использована любая механическая система, способная совершать собственные затухающие колебания (например, маятник настенных часов).

Источником энергии может служить энергия деформация пружины или потенциальная энергия груза в поле тяжести. Устройство обратной связи представляет собой некоторый механизм, с помощью которого автоколебательная система регулирует поступление энергии от источника. На рис. 21.6 изображена схема взаимодействия различных элементов автоколебательной системы.

Примером механической автоколебательной системы может служить часовой механизм с анкерным ходом (рис. 21.7.). Ходовое колесо с косыми зубьями жестко скреплено с зубчатым барабаном, через который перекинута цепочка с гирей. На верхнем конце маятника закреплен анкер (якорек) с двумя пластинками из твердого материала, изогнутыми по дуге окружности с центром на оси маятника. В ручных часах гиря заменяется пружиной, а маятник – балансиром – маховичком, скрепленным со спиральной пружиной.

Рисунок 21.7. Часовой механизм с маятником.

Балансир совершает крутильные колебания вокруг своей оси. Колебательной системой в часах является маятник или балансир. Источником энергии – поднятая вверх гиря или заведенная пружина. Устройством, с помощью которого осуществляется обратная связь, является анкер, позволяющий ходовому колесу повернуться на один зубец за один полупериод.

Обратная связь осуществляется взаимодействием анкера с ходовым колесом. При каждом колебании маятника зубец ходового колеса толкает анкерную вилку в направлении движения маятника, передавая ему некоторую порцию энергии, которая компенсирует потери энергии на трение. Таким образом, потенциальная энергия гири (или закрученной пружины) постепенно, отдельными порциями передается маятнику.

Механические автоколебательные системы широко распространены в окружающей нас жизни и в технике. Автоколебания совершают паровые машины, двигатели внутреннего сгорания, электрические звонки, струны смычковых музыкальных инструментов, воздушные столбы в трубах духовых инструментов, голосовые связки при разговоре или пении и т. д.

При изучении этого раздела следует иметь в виду, что колебания различной физической природы описываются с единых математических позиций. Здесь надо четко уяснить такие понятия, как гармоническое колебание, фаза, разность фаз, амплитуда, частота, период колебани.

Надо иметь в виду, что во всякой реальной колебательной системе есть сопротивления среды, т.е. колебания будут затухающими. Для характеристики затухания колебаний вводится коэффициент затухания и логарифмический декремент затухани.

Если колебания совершаются под действием внешней, периодически изменяющейся силы, то такие колебания называют вынужденными. Они будут незатухающими. Амплитуда вынужденных колебаний зависит от частоты вынуждающей силы. При приближении частоты вынужденных колебаний к частоте собственных колебаний амплитуда вынужденных колебаний резко возрастает. Это явление называется резонансом.

Переходя к изучению электромагнитных волн нужно четко представлять, что электромагнитная волна - это распространяющееся в пространстве электромагнитное поле. Простейшей системой, излучающей электромагнитные волны, является электрический диполь. Если диполь совершает гармонические колебания, то он излучает монохроматическую волну.

Таблица формул: колебания и волны

Физические законы, формулы, переменные

Формулы колебания и волны

Уравнение гармонических колебаний:

где х - смещение (отклонение) колеблющейся величины от положения равновесия;

А - амплитуда;

ω - круговая (циклическая) частота;

α - начальная фаза;

(ωt+α) - фаза.

Связь между периодом и круговой частотой:

Частота:

Связь круговой частоты с частотой:

Периоды собственных колебаний

1) пружинного маятника:

где k - жесткость пружины;

2) математического маятника:

где l - длина маятника,

g - ускорение свободного падения;

3) колебательного контура:

где L - индуктивность контура,

С - емкость конденсатора.

Частота собственных колебаний:

Сложение колебаний одинаковой частоты и направления:

1) амплитуда результирующего колебания

где А 1 и А 2 - амплитуды составляющих колебаний,

α 1 и α 2 - начальные фазы составляющих колебаний;

2) начальная фаза результирующего колебания

Уравнение затухающих колебаний:

е = 2,71... - основание натуральных логарифмов.

Амплитуда затухающих колебаний:

где А 0 - амплитуда в начальный момент времени;

β - коэффициент затухания;

Коэффициент затухания:

колеблющегося тела

где r - коэффициент сопротивления среды,

m - масса тела;

колебательного контура

где R - активное сопротивление,

L - индуктивность контура.

Частота затухающих колебаний ω:

Период затухающих колебаний Т:

Логарифмический декремент затухания:

Связь логарифмического декремента χ и коэффициента затухания β:

Затухающие колебания

Затухающие колебания пружинного маятника

Затухающие колебания - колебания, энергия которых уменьшается с течением времени. Бесконечно длящийся процесс вида в природе невозможен. Свободные колебания любого осциллятора рано или поздно затухают и прекращаются. Поэтому на практике обычно имеют дело с затухающими колебаниями. Они характеризуются тем, что амплитуда колебаний A является убывающей функцией. Обычно затухание происходит под действием сил сопротивления среды, наиболее часто выражаемых линейной зависимостью от скорости колебаний или её квадрата.

В акустике: затухание - уменьшение уровня сигнала до полной неслышимости.

Затухающие колебания пружинного маятника

Пускай имеется система, состоящая из пружины (подчиняющейся закону Гука), один конец которой жёстко закреплён, а на другом находится тело массой m . Колебания совершаются в среде, где сила сопротивления пропорциональна скорости с коэффициентом c (см. вязкое трение).

Корни которого вычисляются по следующей формуле

Решения

В зависимости от величины коэффициента затухания решение разделяется на три возможных варианта.

  • Апериодичность

Если , то имеется два действительных корня, и решение дифференциального уравнения принимает вид:

В этом случае колебания с самого начала экспоненциально затухают.

  • Граница апериодичности

Если , два действительных корня совпадают , и решением уравнения является:

В данном случае может иметь место вре́менный рост, но потом - экспоненциальное затухание.

  • Слабое затухание

Если , то решением характеристического уравнения являются два комплексно сопряжённых корня

Тогда решением исходного дифференциального уравнения является

Где - собственная частота затухающих колебаний.

Константы и в каждом из случаев определяются из начальных условий:

См. также

  • Декремент затухания

Литература

Лит.: Савельев И. В., Курс общей физики:Механика, 2001.


Wikimedia Foundation . 2010 .

Смотреть что такое "Затухающие колебания" в других словарях:

    Затухающие колебания - Затухающие колебания. ЗАТУХАЮЩИЕ КОЛЕБАНИЯ, колебания, амплитуда которых A уменьшается с течением времени вследствие потерь энергии: превращения энергии колебаний в тепло в результате трения в механических системах (например, в точке подвеса… … Иллюстрированный энциклопедический словарь

    Собственные колебания, амплитуда А которых убывает со временем t по закону экспоненты А(t) = Аоexp (?t) (? показатель затухания из за диссипации энергии благодаря силам вязкого трения для механических затухающих колебаний и омическому… … Большой Энциклопедический словарь

    Колебания, амплитуда которых постепенно уменьшается, напр. колебания маятника, испытывающего сопротивление воздуха и трение в подвесе. Все свободные колебания, происходящие в природе, являются в большей или меньшей мере З. К. Электрические З. К.… … Морской словарь

    затухающие колебания - Механические колебания с уменьшающимися во времени значениями размаха обобщенной координаты или ее производной по времени. [Сборник рекомендуемых терминов. Выпуск 106. Механические колебания. Академия наук СССР. Комитет научно технической… … Справочник технического переводчика

    Затухающие колебания - (ВИБРАЦИЯ) колебания (вибрация) с уменьшающимися значениями размаха … Российская энциклопедия по охране труда

    Собственные колебания системы, амплитуда А которых убывает со временем t по закону экспоненты А(t) = А0ехр(?α t) (α показатель затухания) из–за диссипации энергии благодаря силам вязкого трения для механических затухающих колебаний и омическому… … Энциклопедический словарь

    Затухающие колебания - 31. Затухающие колебания Колебания с уменьшающимися значениями размаха Источник … Словарь-справочник терминов нормативно-технической документации

    Собственные колебания системы, амплитуда А к рых убывает со временем t по закону экспоненты A(t) = = Аоехр(at) (a показатель затухания) из за диссипации энергии благодаря силам вязкого трения для механич. 3. к. и омическому сопротивлению для эл … Естествознание. Энциклопедический словарь

    затухающие колебания - silpstantieji virpesiai statusas T sritis automatika atitikmenys: angl. damped oscillation vok. gedämpfte Schwingung, f rus. затухающие колебания, n pranc. oscillations amorties, f; oscillations décroissantes, f … Automatikos terminų žodynas

    затухающие колебания - slopinamieji virpesiai statusas T sritis fizika atitikmenys: angl. damped oscillations; damped vibrations; dying oscillations vok. abklingende Schwingungen, f; gedämpfte Schwingungen, f rus. затухающие колебания, n pranc. oscillations amorties, f … Fizikos terminų žodynas

До сих пор мы рассматривали гармонические колебания, возникающие, как это уже отмечалось, при наличии в системе единственной силы - силы упругости или квазиупругой силы. В окружающей нас природе, строго говоря, таких колебаний не существует. В реальных системах кроме упругих или квазиупругих сил всегда присутствуют и другие силы, отличающиеся по характеру действия от упругих - это силы, возникающие при взаимодействии тел системы с окружающей средой - диссипативные силы. Конечным результатом их действия является переход механической энергии движущегося тела в теплоту. Другими словами, происходит рассеяние или диссипация механической энергии. Процесс рассеяния энергии не является чисто механическим и для своего описания требует привлечения знаний из других разделов физики. В рамках механики мы можем описать этот процесс путем введения сил трения или сопротивления. В результате рассеяния энергии амплитуда колебаний убывает. В этом случае принято говорить, что колебания тела или системы тел затухают. Затухающие колебания уже не являются гармоническими, так как их амплитуда и частота со временем изменяются.

Колебания, которые вследствие рассеяния энергии в колеблющейся системе происходят с непрерывно уменьшающейся амплитудой, называются затухающими. Если колебательная система, выведенная из состояния равновесия, совершает колебания под действием только внутренних сил, без сопротивления и рассеяния (диссипации) энергии, то совершающиеся в ней колебания называются свободными (или собственными) незатухающими колебаниями. В реальных механических системах с диссипацией энергии свободные колебания всегда затухающие. Их частота со отличается от частоты со 0 колебаний системы без затухания (о 0 тем больше, чем больше влияние сил сопротивления.

Рассмотрим затухающие колебания на примере пружинного маятника. Ограничимся рассмотрением малых колебаний. При малых скоростях колебаний силу сопротивления можно принять пропорциональной величине скорости колебательных смещений

где v = 4 - скорость колебаний; г - коэффициент пропорциональности, называемый коэффициентом сопротивления. Знак минус в выражении (2.79) для силы сопротивления обусловлен тем, что она направлена в сторону, противоположную скорости движения колеблющегося тела.

Зная выражения для квазиупругой силы i^p = -и силы сопротивления F c = с учетом совместного действия этих сил, можно записать динамическое уравнение движения тела, совершающего затухающие колебания

В этом уравнении коэффициент (3 в соответствии с формулой (2.49) заменим на ты], после чего последнее уравнение разделим наши получим

Будем искать решение уравнения (2.81) в виде функции времени вида

Здесь пока еще неопределенная постоянная величина у. Начальная фаза в нашем рассмотрении будет для упрощения предполагаться равной нулю, т.е. мы можем «включить» секундомер тогда, когда колебательное смещение проходит через положение равновесия (нуль координаты).

Определить величину у можем путем подстановки в дифференциальное уравнение затухающих колебаний (2.81) предполагаемого решения (2.82), а также получаемых из него скорости

и ускорения

Подстановка (2.83) и (2.84) совместно с (2.82) в (2.81) дает После сокращения на /1 () е" : " и умножения на «-1» получим Решив это квадратное уравнение относительно у, имеем

Подставив у в (2.82), найдем, как зависит смещение от времени при затухающих колебаниях. Введем обозначения

где символом со обозначена угловая частота затухающих колебаний и соо угловая частота свободных колебаний без затухания. Видно, что при S > 0 частота со затухающих колебаний всегда меньше частоты

Таким образом, и, следовательно, смещение при затухающих колебаниях может быть выражено в виде

Выбор знака «+» или «-» в показателе второй экспоненты произволен и отвечает сдвигу колебаний по фазе на л . Будем записывать затухающие колебания с учетом выбора знака «+», тогда выражение (2.90) будет

Это и есть искомая зависимость смещения от времени. Ее можно переписать и в тригонометрической форме (ограничиваясь действительной частью)

Искомая зависимость амплитуды A(t ) от времени может быть представлена в виде

где А(, - амплитуда в момент времени t = 0.

Постоянную 8, равную согласно (2.88) отношению коэффициента сопротивления г к удвоенной массе т колеблющегося тела, называют коэффициентом затухания колебаний. Выясним физический смысл этого коэффициента. Найдем то время т, за которое амплитуда затухающих колебаний уменьшится в е (основание натуральных логарифмов е = 2,72) раз. Для этого положим

Используя соотношение (2.93), получим: или

откуда следует

Следовательно, коэффициент затухания 8 - это величина, обратная времени т, по прошествии которого амплитуда затухающих колебаний уменьшится в е раз. Величина т, имеющая размерность времени, называется постоянной времени затухающего колебательного процесса.

Кроме коэффициента 8 для характеристики процесса затухания колебаний часто используют так называемый логарифмический декремент затухания X, равный натуральному логарифму отношения двух амплитуд колебаний, отделенных друг от друга промежутком времени, равным периоду Т

Выражение под логарифмом, обозначенное символом d, называется просто декрементом колебаний (декрементом затухания).

Используя выражение амплитуды (2.93), получим:

Выясним физический смысл логарифмического декремента затухания. Пусть амплитуда колебаний уменьшается в е раз по прошествии N колебаний. Время т, за которое тело совершит N колебаний, можно выразить через период т = NT. Подставив это значение т в (2.97), получаем 8NT= 1. Поскольку 67"= А., то NX = 1, или

Следовательно, логарифмический декремент затухания есть величина, обратная числу колебаний, за которые амплитуда затухающих колебаний уменьшится в е раз.

В ряде случаев зависимость амплитуды колебаний от времени A{t) удобно выразить через логарифмический декремент затухания А. Показатель степени 61 выражения (2.93) можно записать согласно (2.99) следующим образом:

Тогда выражение (2.93) принимает вид

где величина, равная числу N колебаний, совершаемых системой за время т.

В таблице 2.1 проведены примерные значения (по порядку величины) логарифмических декрементов затухания некоторых колебательных систем.

Таблица 2.1

Значения декрементов затухания некоторых колебательных систем

Проанализируем теперь влияние сил сопротивления на частоту колебаний. При смешении тела из положения равновесия и возвращении его в положение равновесия, на него все время будет действовать сила сопротивления, вызывая его торможение.

Это значит, что те же самые участки пути при затухающих колебаниях будут пройдены телом за больший интервал времени, чем при свободных колебаниях. Период затухающих колебаний Т, следовательно, будет больше периода собственных свободных колебаний. Из выражения (2.89) видно, что различие в частотах становится тем больше, чем больше коэффициент затухания б. При больших б (б > соо) затухающие колебания вырождаются в апериодический {не периодический) процесс, при котором в зависимости от начальных условий система возвращается в положение равновесия сразу без его прохождения, либо перед остановкой проходит положение равновесия однократно (совершает только одно колебание) - см. рис. 2.16.

Рис. 2.16. Затухающие колебания:

На рисунке 2.16, а изображен график зависимости %{t) и A{t) (при 5 > со 0 и начальной фазе соо, колебания вовсе невозможны (этому случаю соответствует мнимое значение частоты, определяемой из равенства (2.89). Система становится демпфирующей, а колебательный процесс - апериодическим (рис. 2.16, б).

  • Запись ехр(х) эквивалентна е*. Мы будем пользоваться обеими формами.
  • При общем рассмотрении колебаний полное значение фазы колебаний задается начальными условиями, т.е. величиной смещения 4(0 и скорости 4(0 в начальный моментвремени (t = 0) и включает слагаемое
Поделитесь с друзьями или сохраните для себя:

Загрузка...