Множества чисел. Законы действий над различными числами. Множество замкнуто относительно операции Связь дополнений открытых и замкнутых множеств

Докажем теперь некоторые специальные свойства замкнутых и открытых множеств.

Теорема 1. Сумма конечного или счетного числа открытых множеств есть открытое множество. Произведение конечного числа открытых множеств есть открытое множество,

Рассмотрим сумму конечного или счетного числа открытых множеств:

Если , то Р принадлежит по крайней мере одному из Пусть Так как - открытое множество, то некоторая -окрестность Р также принадлежит Эта же -окрестность Р принадлежит и сумме g, откуда и следует, что g есть открытое множество. Рассмотрим теперь конечное произведение

и пусть Р принадлежит g. Докажем, как и выше, что и некоторая -окрестность Р принадлежит g. Раз Р принадлежит g, то Р принадлежит всем . Так как - открытые множества, то для любого существует некоторая -окрестность точки принадлежащая . Если число взять равным наименьшему из число которых конечно, то -окрестность точки Р будет принадлежать всем а следовательно, и g. Отметим, что нельзя утверждать, что произведение счетного числа открытых множеств есть открытое множество.

Теорема 2. Множество CF - открытое и множество СО - замкнутое.

Докажем первое утверждение. Пусть Р принадлежит CF. Надо доказать, что некоторая - окрестность Р принадлежит CF. Это следует из того, что, если бы в любой -окрестности Р находились точки F, точка Р, не принадлежащая по условию была бы предельной для F точкой и, в силу замкнутости должна была бы принадлежать что приводит к противоречию.

Теорема 3. Произведение конечного или счетного числа замкнутых множеств есть замкнутое множество. Сумма конечного числа замкнутых множеств есть замкнутое множество.

Докажем, например, что множество

замкнуто. Переходя к дополнительным множествам, можем написать

По теореме открытые множества, и, согласно теореме 1, множество тоже открытое, и тем самым дополнительное множество g замкнуто. Отметим, что сумма счетного числа замкнутых множеств может оказаться и незамкнутым множеством.

Теорема 4. Множество есть открытое множество и множество замкнутое.

Легко проверить следующие равенства:

Из них, в силу предыдущих теорем, следует теорема 4.

Мы будем говорить, что множество g покрыто системой М некоторых множеств, если всякая точка g входит по крайней мере в одно из множеств системы М.

Теорема 5 (Бореля). Если замкнутое ограниченное множество F покрыто бесконечной системой а открытых множеств О, то из этой бесконечной системы можно извлечь конечное число открытых множеств, которые также покрывают F.

Доказываем эту теорему от обратного. Положим, что никакое конечное число открытых множеств из системы а не покрывает и приведем это к противоречию. Раз F - ограниченное множество, то все точки F принадлежат некоторому конечному двумерному промежутку . Разобьем этот замкнутый промежуток на четыре равные части, деля промежутки пополам. Каждый из полученных четырех промежутков будем брать замкнутым. Те точки F, которые попадут на один из этих четырех замкнутых промежутков, будут, в силу теоремы 2, представлять собой замкнутое множество, и по крайней мере одно из этих замкнутых множеств не может быть покрыто конечным числом открытых множеств из системы а. Берем тот из указанных выше четырех замкнутых промежутков, где это обстоятельство имеет место. Этот промежуток опять делим на четыре равные части и рассуждаем так же, как и выше. Таким образом, получим систему вложенных промежутков из которых каждый следующий представляет собой четвертую часть предыдущего, и имеет место следующее обстоятельство: множество точек F, принадлежащих при любом k не может быть покрыто конечным числом открытых множеств из системы а. При беспредельном возрастании k промежутки будут беспредельно сжиматься к некоторой точке Р, которая принадлежит всем промежуткам . Поскольку при любом k содержат бесчисленное множество точек точка Р является предельной точкой для а потому и принадлежит F, ибо F - замкнутое множество. Тем самым точка Р покрывается некоторым открытым множеством принадлежащим к системе а. Некоторая -окрестность точки Р будет также принадлежать открытому множеству О. При достаточно больших значениях k промежутки Д попадут внутрь указанной выше -окрестности точки Р. Тем самым эти будут целиком покрыты только одним открытым множеством O системы а, а это противоречит тому, что точки принадлежащие при любом k не могут быть покрыты конечным числом открытых множеств, принадлежащих а. Тем самым теорема доказана.

Теорема 6. Открытое множество может быть представлено как сумма счетного числа полуоткрытых промежутков попарно без общих точек.

Напомним, что полуоткрытым промежутком на плоскости мы называем конечный промежуток, определяемый неравенствами вида .

Нанесем на плоскости сетку квадратов со сторонами, параллельными осям, и с длиной стороны, равной единице. Множество этих квадратов есть счетное множество. Выберем из этих квадратов те квадраты, все точки которых принадлежат заданному открытому множеству О. Число таких квадратов может быть конечным или счетным, а может быть таких квадратов вовсе не будет. Каждый из оставшихся квадратов сетки разделим на четыре одинаковых квадрата и из вновь полученных квадратов выберем опять те, все точки которых принадлежат О. Каждый из оставшихся квадратов опять делим на четыре равные части и отбираем те квадраты, все точки которых принадлежат О, и т. д. Покажем, что всякая точка Р множества О попадет в один из выбранных квадратов, все точки которого принадлежат О. Действительно, пусть d - положительное расстояние от Р до границы О. Когда мы дойдем до квадратов, диагональ которых меньше , то можно, очевидно, утверждать, что точка Р уже попала в квадрат, все томки которого принадлежат О. Если выбранные квадраты считать полуоткрытыми, то они не будут попарно иметь общих точек, и теорема доказана. Число отобранных квадратов будет обязательно счетным, так как конечная сумма полуоткрытых промежутков не есть, очевидно, открытое множество. Обозначая через ДЛ те полуоткрытые квадраты, которые мы получили в результате указанного выше построения, можем написать

Счетное множество- есть бесконечное множество элементы которого можно пронумеровать натуральными числами, или это множество, равномощное множеству натуральных чисел.

Иногда счётными называются множества равномощные любому подмножеству множества натуральных чисел, то есть все конечные множества тоже считаются счётными.

Счётное множество является «наименьшим» бесконечным множеством, то есть в любом бесконечном множестве найдётся счётное подмножество.

Свойства:

1.Любое подмножество счётного множества не более чем счётно.

2.Объединение конечного или счётного числа счётных множеств счётно.

3.Прямое произведение конечного числа счётных множеств счётно.

4.Множество всех конечных подмножеств счётного множества счётно.

5.Множество всех подмножеств счётного множества континуально и, в частности, не является счётным.

Примеры счетных множеств:

Простые числа Натуральные числа, Целые числа, Рациональные числа, Алгебраические числа, Кольцо периодов, Вычислимые числа, Арифметические числа.

Теория вещественных чисел.

(Вещественные = действительные – памятка для нас, пацаны.)

Множество R содержит рациональные и иррациональные числа.

Действительные числа, не являющиеся рациональными, называются иррациональными

Теорема: Не существует рационального числа, квадрат которого равен числу 2

Рациональные числа: ½, 1/3, 0.5, 0.333.

Иррациональные числа: корень из 2=1,4142356… , π=3.1415926…

Множество R действительных чисел обладает следующими свойствами:

1. Оно упорядоченное: для любых двух различных чисел a и b имеет место одно из двух соотношений a либо a>b

2. Множество R плотное: между двумя различными числами a и b содержится бесконечное множество действительных чисел х, т.е чисел, удовлетворяющих неравенству а

Там еще 3-е свойство, но оно огромное, сорри

Ограниченные множества. Свойства верхних и нижних границ.

Ограниченное множество - множество, которое в определенном смысле имеет конечный размер.

ограниченным сверху , если существует число , такое что все элементы не превосходят :

Множество вещественных чисел называется ограниченным снизу , если существует число ,

такое что все элементы не меньше :

Множество , ограниченное сверху и снизу, называется ограниченным .

Множество , не являющееся ограниченным, называется неограниченным . Как следует из определения, множество не ограничено тогда и только тогда, когда оно не ограничено сверху или не ограничено снизу .

Числовая последовательность. Предел последовательности. Лемма о двух милиционерах.

Числовая последовательность - это последовательность элементов числового пространства.

Пусть - это либо множество вещественных чисел , либо множество комплексных чисел . Тогда последовательность элементов множества называется числовой последовательностью.

Пример.

Функция является бесконечной последовательностью рациональных чисел. Элементы этой последовательности начиная с первого имеют вид .

Предел последовательности - это объект, к которому члены последовательности приближаются с ростом номера. В частности, для числовых последовательностей предел - это число, в любой окрестности которого лежат все члены последовательности начиная с некоторого.

Теорема о двух милиционерах…

Если функция такая, что для всех в некоторой окрестности точки , причем функции и имеют одинаковый предел при , то существует предел функции при , равный этому же значению, то есть

Пусть даны два множества X и Y, совпадающие или нет.

Определение. Множество упорядоченных пар элементов, из которых первый принадлежит X, а второй Y, называется декартовым произведением множеств и обозначается .

Пример. Пусть
,
, тогда

.

Если
,
, тогда
.

Пример. Пусть
, где R – множество всех вещественных чисел. Тогда
есть множество всех декартовых координат точек плоскости.

Пример. Пусть
– некоторое семейство множеств, тогда декартовым произведением этих множеств называется множество всех упорядоченных строк длины n:

Если , то. Элементы из
– это векторы-строки длины n.

Алгебраические структуры с одной бинарной операцией

1 Бинарные алгебраические операции

Пусть
– произвольное конечное или бесконечное множество.

Определение. Бинарной алгебраической операцией (внутренним законом композиции ) на
называется произвольное, но фиксированное отображение декартова квадрата
в
, т.е.

(1)

(2)

Таким образом, любой упорядоченной паре

. Тот факт, что
, записывается символически в виде
.

Как правило, бинарные операции обозначаются символами
и т.д. Как и ранее, операция
означает «сложение», а операция «» – «умножение». Они различаются формой записи и, возможно, аксиомами, что будет ясно из контекста. Выражение
будем называть произведением, а
– суммой элементови.

Определение. Множество
называется замкнутым относительно операции, если для любых .

Пример. Рассмотрим множество целых неотрицательных чисел
. В качестве бинарных операций на
будем рассматривать обычные операции сложения
и умножения. Тогда множества
,
будут замкнуты относительно этих операций.

Замечание. Как следует из определения, задание алгебраической операции * на
, эквивалентно замкнутости множества
относительно этой операции. Если оказывается, что множество
не замкнуто относительно заданной операции *, то в этом случае говорят, что операция * не алгебраическая. Например, операция вычитания на множестве натуральных чисел не алгебраическая.

Пусть
и
два множества.

Определение. Внешним законом композиции на множестве называется отображение

, (3)

т.е. закон, посредством которого любому элементу
и любому элементу
ставится в соответствие элемент
. Тот факт, что
, обозначается символом
или
.

Пример. Умножение матрицы
на число
является внешним законом композиции на множестве
. Умножение чисел в
можно рассматривать и как внутренний закон композиции, и как внешний.

дистрибутивным относительно внутреннего закона композиции * в
, если

Внешний закон композиции называется дистрибутивным относительно внутреннего закона композиции * в Y, если

Пример. Умножение матрицы
на число
дистрибутивно как относительно сложения матриц, так и относительно сложения чисел, т.к.,.

    1. Свойства бинарных операций

Бинарная алгебраическая операция  на множестве
называется:

Замечание. Свойства коммутативности и ассоциативности независимы.

Пример. Рассмотрим множество целых чисел . Операцию на определим в соответствии с правилом
. Выберем числа
и выполним операцию над этими числами:

т.е. операция  коммутативна, но не ассоциативна.

Пример. Рассмотрим множество
– квадратных матриц размерности
с вещественными коэффициентами. В качестве бинарной операции * на
будем рассматривать операции умножения матриц. Пусть
, тогда
, однако
, т.е. операция умножения на множестве квадратных матриц ассоциативна, но не коммутативна.

Определение. Элемент
называетсяединичным или нейтральным относительно рассматриваемой операции  на
, если

Лемма. Если – единичный элемент множества
, замкнутого относительно операции *, то он единственный.

Доказательство . Пусть – единичный элемент множества
, замкнутого относительно операции *. Предположим, что в
существует ещё один единичный элемент
, тогда
, так как– единичный элемент, и
, так как– единичный элемент. Следовательно,
– единственный единичный элемент множества
.

Определение. Элемент
называетсяобратным или симметричным к элементу
, если

Пример. Рассмотрим множество целых чисел с операцией сложения
. Элемент
, тогда симметричным элементом
будет элемент
. Действительно,.

Множество натуральных чисел образуют числа 1, 2, 3, 4, ..., используемые для счёта предметов. Множество всех натуральных чисел принято обозначать буквой N :

N = {1, 2, 3, 4, ..., n , ...} .

Законы сложения натуральных чисел

1. Для любых натуральных чисел a и b верно равенство a + b = b + a . Это свойство называют переместительным (коммутативным) законом сложения.

2. Для любых натуральных чисел a , b , c верно равенство (a + b ) + c = a + (b + c ) . Это свойство называют сочетальным (ассоциативным) законом сложения.

Законы умножения натуральных чисел

3. Для любых натуральных чисел a и b верно равенство ab = ba . Это свойство называют переместительным (коммутативным) законом умножения.

4. Для любых натуральных чисел a , b , c верно равенство (a b )c = a (b c ) . Это свойство называют сочетальным (ассоциативным) законом умножения.

5. При любых значениях a , b , c верно равенство (a + b )c = ac + bc . Это свойство называют распределительным (дистрибутивным) законом умножения (относительно сложения).

6. При любых значениях a верно равенство a *1 = a . Это свойство называют законом об умножении на единицу.

Результатом сложения или умножения двух натуральных чисел всегда является натуральное число. Или, говоря иначе, эти операции можно выполнить, оставаясь во множестве натуральных чисел. Относительно вычитания и деления этого сказать нельзя: так, из числа 3 нельзя, оставаясь во множестве натуральных чисел, вычесть число 7; число 15 нельзя разделить на 4 нацело.

Признаки делимости натуральных чисел

Делимость суммы. Если каждое слагаемое делится на некоторое число, то и сумма делится на это число.

Делимость произведения. Если в произведении хотя бы один из сомножителей делится нацело на некоторое число, то и произведение делится на это число.

Эти условия, как для суммы, так и для произведения, являются достаточными, но не необходимыми. Например, произведение 12*18 делится на 36, хотя ни 12, ни 18 на 36 не делятся.

Признак делимости на 2. Для того, чтобы натуральное число делилось на 2, необходимо и достаточно, чтобы его последняя цифра была чётной.

Признак делимости на 5. Для того, чтобы натуральное число делилось на 5, необходимо и достаточно, чтобы его последняя цифра была либо 0, либо 5.

Признак делимости на 10. Для того, чтобы натуральное число делилось на 10, необходимо и достаточно, чтобы цифра единиц была 0.

Признак делимости на 4. Для того, чтобы натуральное число, содержащее не менее трёх цифр, делилось на 4, необходимо и достаточно, чтобы последние цифры были 00, 04, 08 или двузначное число, образованное последними двумя цифрами данного числа, делилось на 4.

Признак делимости на 2 (на 9). Для того, чтобы натуральное число делилось на 3 (на 9), необходимо и достаточно, чтобы сумма его цифр делилась на 3 (на 9).

Множество целых чисел

Рассмотрим числовую прямую с началом отсчёта в точке O . Координатой числа нуль на ней будет точка O . Числа, расположенные на числовой прямой в заданном направлении, называют положительными числами. Пусть на числовой прямой задана точка A с координатой 3. Она соответствует положительному числу 3. Отложим теперь три раза единичный отрезок от точки O , в направлении, противоположном заданному. Тогда получим точку A" , симметричную точке A относительно начала координат O . Координатой точки A" будет число - 3. Это число, противоположное числу 3. Числа, расположенные на числовой прямой в направлении, противоположном заданному, называют отрицательными числами.

Числа, противоположные натуральным, образуют множество чисел N" :

N" = {- 1, - 2, - 3, - 4, ...} .

Если объединить множества N , N" и одноэлементное множество {0} , то получим множество Z всех целых чисел:

Z = {0} ∪ N N" .

Для целых чисел верны все перечисленные выше законы сложения и умножения, которые верны для натуральных чисел. Кроме того, добавляются следующие законы вычитания:

a - b = a + (- b ) ;

a + (- a ) = 0 .

Множество рациональных чисел

Чтобы сделать выполнимой операцию деления целых чисел на любое число, не равное нулю, вводятся дроби:

Где a и b - целые числа и b не равно нулю.

Если к множеству целых чисел присоединить множество всех положительных и отрицательных дробей, то получается множество рациональных чисел Q :

.

При этом каждое целое число является также рациональным числом, так как, например, число 5 может быть представлено в виде , где числитель и знаменатель - целые числа. Это бывает важно при операциях над рациональными числами, из которых одно может быть целым числом.

Законы арифметических действий над рациональными числами

Основное свойство дроби. Если числитель и знаменатель данной дроби умножить или разделить на одно и то же натуральное число, то получится дробь, равная данной:

Это свойство используется при сокращении дробей.

Сложение дробей. Сложение обыкновенных дробей определяется следующим образом:

.

То есть, для сложения дробей с разными знаменателями дроби приводятся к общему знаменателю. На практике при сложении (вычитании) дробей с разными знаменателями дроби приводятся к наименьшему общему знаменателю. Например, так:

Для сложения дробей с одинаковыми числителями достаточно сложить числители, а знаменатель оставить прежним.

Умножение дробей. Умножение обыкновенных дробей определяется следующим образом:

То есть, для умножения дроби на дробь нужно числитель первой дроби умножить на числитель второй дроби и записать произведение в числитель новой дроби, а знаменатель первой дроби умножить на знаменатель второй дроби и записать произведение в знаменатель новой дроби.

Деление дробей. Деление обыкновенных дробей определяется следующим образом:

То есть, для деления дроби на дробь нужно числитель первой дроби умножить на знаменатель второй дроби и произведение записать в числитель новой дроби, а знаменатель первой дроби умножить на числитель второй дроби и произведение записать в знаменатель новой дроби.

Возведение дроби в степень с натуральным показателем. Эта операция определяется следующим образом:

То есть, для возведения дроби в степень числитель возводится в эту степень и знаменатель возводится в эту степень.

Периодические десятичные дроби

Теорема. Любое рациональное число можно представить в виде конечной или бесконечной периодической дроби.

Например,

.

Последовательно повторяющаяся группа цифр после запятой в десятичной записи числа называется периодом, а конечная или бесконечная десятичная дробь, имеющая такой период в своей записи, называется периодической.

При этом любую конечную десятичную дробь считают бесконечной периодической дробью с нулём в периоде, например:

Результат сложения, вычитания, умножения и деления (кроме деления на нуль) двух рациональных чисел - также рациональное число.

Множество действительных чисел

На числовой прямой, которую мы рассмотрели в связи с множеством целых чисел, могут быть точки, не имеющие координат в виде рационального числа. Так, не существует рационального числа, квадрат которого равен 2. Следовательно, число не является рациональным числом. Так же не существует рациональных чисел, квадраты которых равны 5, 7, 9. Следовательно, иррациональными являются числа , , . Иррациональным является и число .

Никакое иррациональное число не может быть представлено в виде периодической дроби. Их представляют в виде непериодических дробей.

Объединение множеств рациональных и иррациональных чисел представляет собой множество действительных чисел R .

ОПРЕДЕЛЕНИЕ 5. Пусть Х - метрическое пространство, МÌ Х, аÎХ. Точка а называется предельной точкой М, если в любой окрестности а есть точки множества М\{a}. Последнее означает, что в любой окрестности а есть точки множества М, отличные от а.

Замечания. 1. Предельная точка может, как принадлежать, так и не принадлежать множеству. Например, 0 и 1 являются предельными точками множества (0,2), но первая ему не принадлежит, а вторая принадлежит.

2. Точка множества М может не являться его предельной точкой. В этом случае она называется изолированной точкой М. Например, 1 - изолированная точка множества (-1,0)È{1}.

3. Если предельная точка а не принадлежит множеству М, то найдется последовательность точек х n ÎM, сходящаяся к а в этом метрическом пространстве. Для доказательства достаточно взять открытые шары в этой точке радиусов 1/n и выбрать из каждого шара точку, принадлежащую М. Верно и обратное, если для а есть такая последовательность, то точка является предельной.

ОПРЕДЕЛЕНИЕ 6. Замыканием множества М называется объединение М с множеством его предельных точек. Обозначение .

Отметим, что замыкание шара не обязано совпадать с замкнутым шаром того же радиуса. Например, в дискретном пространстве замыкание шара B(a,1) равно самому шару (состоит из одной точки a) в то время как замкнутый шар (a,1) совпадает со всем пространством.

Опишем некоторые свойства замыкания множеств.

1. МÌ . Это следует непосредственно из определения замыкания.

2. Если М Ì N, то Ì . Действительно, если a Î , a ÏМ, то в любой окрестности a есть точки множества М. Они же являются точками N. Поэтому aÎ . Для точек из М это ясно по определению.

4. .

5. Замыкание пустого множества пустое. Это соглашение не следует из общего определения, но является естественным.

ОПРЕДЕЛЕНИЕ 7. Множество M Ì X называется замкнутым, если = M.

Множество M Ì X называется открытым, если замкнуто множество X\M.

Множество M Ì X называется всюду плотным в X, если = X.

ОПРЕДЕЛЕНИЕ 8. Точка а называется внутренней точкой множества M, если B(a,r)ÌM при некотором положительном r, т. е. внутренняя точка входит во множество вместе с некоторой окрестностью. Точка а называется внешней точкой множества M, если шар B(a,r)ÌХ/M при некотором положительном r, т. е. внутренняя точка не входит во множество вместе с некоторой окрестностью. Точки, которые не являются ни внутренними, ни внешними точками множества M, называются граничными.

Таким образом, граничные точки характеризуются тем, что в каждой их окрестности есть точки как входящие, так и не входящие в M.

ПРЕДЛОЖЕНИЕ 4. Для того, чтобы множество являлось открытым, необходимо и достаточно, чтобы все его точки были внутренними.

Примерами замкнутых множеств на прямой являются , }

Поделитесь с друзьями или сохраните для себя:

Загрузка...