Двухмерная сейсморазведка метод огт. Общей глубинной точки способ. Основные требования к методике ОГТ

Тема 6. Методика и технология сейсморазведочных работ 8 часов, лекции № 16 и № 19Лекция № 17
Метод общей глубинной точки (МОГТ)
Системы наблюдений в МОГТ-2D

Основы метода общей глубинной точки

Метод общей средней (глубинной) точки ОСТ (ОГТ) был предложен в 1950 г. Н.
Мейном (США) в качестве эффективного средства ослабления многократных
отраженных волн, которые являются очень сильными и трудно устранимыми помехами.
Для подавления кратных волн-помех Мейном была предложена технология Common
Depth Point Stacking CDPS - суммирование по общей глубинной точке. Для
горизонтальных отражающих границ общие средние и общие глубинные точки совпадают
в плане, поэтому правильное название метода МОСТ (по англ. Common Mid Point Stacking
- CMPS - суммирование по общей средней точке).
Широкое практическое использование этого метода началось после внедрения
цифровой обрабатывающей техники. Основным методом исследований в сейсморазведке
способ ОСТ стал после полного перехода на работу с цифровой регистрирующей
аппаратурой.

Сущность метода ОГТ

Принципиальную сущность метода ОГТ (ОСТ) составляет идея многократного
прослеживания отражений от границы при различном взаимном положении источников и
приемников упругих колебаний.
На рис. – а показаны четыре источника (S) и приемника (R) симметрично
расположенные относительно средней точки – М, являющейся проекцией глубинной
точки – D. Таким образом мы получили четыре отражения от одной точки – т. е. при
перемещении всей установки по профилю х, получим четырехкратное прослеживание
границы.
Времена пробега от источника до приемника увеличиваются с увеличением
дистанции, увеличивается и разница времен пробега по косому и вертикальному лучам
называемая кинематической поправкой и обозначаемая как - (х) или (х) (рис б).

Схематический пример ослабления многократного отражения при суммировании трасс 6 кратной системой ОГТ.

На исходной сейсмограмме присутствуют две волны равной интенсивности:
однократное отражение с годографом - tодн и многократное отражение имеющее более
крутой годограф – tкр (так как кратные волны имеют меньшие скорости)
После ввода кинематических поправок годограф однократной волны спрямляется в
линию t0 а годограф многократной волны имеет остаточное запаздывание.
Суммирование исправленных трасс усиливает однократное отражение в 6 раз, а
многократное отражение усиливается не так существенно.

Основные требования к методике ОГТ

Требования к базе наблюдения. Годографы однократных и многократных
отраженных волн по кривизне отличаются незначительно, эти различия становятся тем
больше, чем больше базы наблюдения, следовательно, для эффективного подавления
многократных волн-помех требуются большие базы, на практике это несколько км;
Требования к поправкам. Наблюдения на больших базах (при центральной системе
наблюдения до 6 км. и более) накладывает высокие требования к точности введении
статических и кинематических поправок.

Годографы ОГТ однократных и многократных отраженных волн

,
Годографы ОГТ однократных и многократных
отраженных волн
Для однократных отраженных волн от плоской границы, ранее нами было
получено уравнение годографа ОТВ в виде:
1
2
2
t x
V
x 4hx sin 4h
где h – глубина до границы по нормали, V – скорость, φ – угол наклона границ, знак + под
корнем берется в случае направления по падению границы. Начало координат этого
годографа находится в точке возбуждения (ОТВ), а сам он имеет форму гиперболы,
смещенную в сторону восстания границы.
Полученное выражение используем для вывода уравнение годографа ОГТ
однократной отраженной волны. Рассмотрим симметрично расположенные относительно
начала координат источник S и приемник R (рис. на следующем слайде). Выразим глубину
под источником h через h0:
x
h h0 sin
2
Подставив это выражение в уравнение годографа ОТВ, после преобразований получим
годограф ОГТ в виде:

Или используя формулу
t0
2h
V
окончательно получим
Полученный годограф имеет
так же форму гиперболы, но
симметричен относительно
начала координат. Кривизна
годографа определяется не
только скоростью V, но углом
наклона границы φ.
Отношение скорости к углу
наклона называется
скоростью ОГТ или
скоростью суммирования.
VОГТ
V
cos
При φ = 0, годограф
называется нормальным
годографом ОГТ
t н x
x2
t 2
V
2
0

Годографы ОГТ кратных отраженных волн

Для кратных волн от горизонтальных границ (это уравнение наиболее часто
используется при проектировании ИС, когда обычно полагают, что φ = 0) можно записать
уравнение:
2
tкр x t02кр
x
Vкр2
Для полно кратной волны, m – кратность волны, Vкр = V.
В общем случае (для полно кратных и частично кратных волн) используются
формулы:
h
t0 кр
h
i
Vi
i
Vкр
i
i
t 0кк
Схемы лучей для полно кратных (а) и частично кратных волн (б)

Количественные характеристиками системы наблюдений

N - (Fold) - кратность прослеживания отражающих горизонтов. Часто для
краткости ее называют просто кратностью системы наблюдений;
L- база наблюдений - участок профиля, занимаемый совокупностью пунктов
приема при записи сейсмических волн от одного пункта возбуждения;
S (N) - (N0) - число каналов регистрирующей аппаратуры;
l – удаление (дистанция), расстояние от пункта приема до пункта
возбуждения;
Δl - интервал возбуждения (SI – Sourse Interval) упругих волн - расстояние
по профилю (по линии пунктов возбуждения) между двумя соседними пунктами
возбуждения упругих волн;
Хmax, Хmiх - минимальное и максимальное удаление пунктов приема
колебаний от пункта возбуждения упругих волн;
Δx- шаг наблюдений (RI – Reseiver Interval) - расстояние между двумя
соседними пунктами приема колебаний (по линии пунктов приема);
R - вынос (офсет) - расстояние от ближайшего пункта приема колебаний до
пункта возбуждения упругих колебаний;

Системы наблюдения МОГТ 2Д

Ранее нами выяснено что для многократного прослеживания отражений от
границы уменьшить интервал возбуждения (SI – Sourse Interval) - Δl по сравнению с
базой наблюдения – L. Для обеспечения непрерывного, однократного прослеживания
границы интервал возбуждения Δl должен быть в два раза меньше базы наблюдения L

Ключевые слова

CЕЙСМОРАЗВЕДКА МОГТ / ПРЯМОЙ ПОИСК ЗАЛЕЖЕЙ УГЛЕВОДОРОДОВ / НАВЕДЕННЫЙ ГЕОДИНАМИЧЕСКИЙ ШУМ / КОЭФФИЦИЕНТ УСПЕШНОСТИ ПОИСКОВО-РАЗВЕДОЧНОГО БУРЕНИЯ / CDPM SEISMIC / DIRECT HYDROCARBON EXPLORATION / INDUCED GEODYNAMIC NOISE / PROSPECTING AND EXPLORATORY DRILLING SUCCESS RATIO

Аннотация научной статьи по наукам о Земле и смежным экологическим наукам, автор научной работы - Максимов Л.А., Ведерников Г.В., Яшков Г.Н.

Приводятся сведения о технологии пассивно-активной сейсморазведки методом общей глубинной точки (ПАС МОГТ), решающей задачу прямого поиска залежей углеводородов по динамическим параметрам, излучаемых этими залежами наведенного геодинамического шума . Показано, что использование этой технологии позволяет предотвратить бурение непродуктивных скважин. Материалы и методы В предлагаемой технологии ПАС МОГТ комплексируются регистрация и интерпретация излучаемых залежами УВ и отраженных от сейсмических границ волн. Этим обеспечивается высокая эффективность изучения геометрии отражающих границ и регистрации излучаемых залежами УВ наведенных геодинамических шумов . Итоги Технология ПАС МОГТ опробована на десятках месторождений УВ Западной и Восточной Сибири и показала свою эффективность: все месторождения отмечаются аномалиями интенсивности геодинамических шумов и отсутствием таких аномалий вне месторождений. Выводы Указанные выше возможности технологии ПАС МОГТ весьма актуальны в настоящее время, когда кризис в экономике продолжает усиливаться. Данная технологии позволит нефтяникам бурить ловушки УВ, а не структуры, что повысит эффективность геолого-разведочных работ (в разы) при поисках нефти и газа.

Похожие темы научных работ по наукам о Земле и смежным экологическим наукам, автор научной работы - Максимов Л.А., Ведерников Г.В., Яшков Г.Н.

  • Сейсмические исследования неравномерности открытой трещиноватости и неоднородности флюидонасыщения геологической среды для оптимального освоения месторождений нефти и газа

    2018 / Кузнецов О.Л., Чиркин И.А., Арутюнов С.И., Ризанов Е.Г., Дыбленко В.П., Дрягин В.В.
  • Перспективы освоения сенонского газоносного комплекса севера Западной Сибири

    2016 / Пережогин А.С., Нежданов А.А., Смирнов А.С.
  • О связи среднечастотных микросейсм с газовой залежью

    2014 / Хогоев Евгений Андреевич
  • Тектоническая модель строения доюрских отложений Шугинского малого вала, прогноз нефтегазоносности палеозоя

    2019 / Судакова В.В., Панасенко В.Ю., Наймушин А.Г.
  • Эмиссионная сейсмическая томография - инструмент для изучения трещиноватости и флюидодинамики земной коры

    2018 / Чеботарева И.Я.
  • Время искать и развиваться

    2009 / Шабалин Николай Яковлевич, Биряльцев Евгений Васильевич
  • О наблюдении сейсмоэлектрического эффекта и потенциалов вызванной поляризации на Минусинском газоконденсатном месторождении в естественных шумовых полях Земли

    2016 / Шайдуров Г.Я., Кудинов Д.С., Потылицын В.С.
  • Применение геохимической съемки на разных стадиях геолого-разведочных работ

    2018 / Тимшанов Р.И., Белоносов А.Ю., Шешуков С.А.
  • Использование метода детектирования микросейсмических шумовых полей в поисково-разведочных работах в нефтегазовом комплексе для снижения экологических последствий

    2019 / Цивадзе Аслан Ю., Сиротинский Юрий В., Абатуров Михаил А.
  • Исследование влияния трещиноватости на продуктивность скважин Чаяндинского нефтегазоконденсатного месторождения

    2018 / Крылов Д.Н., Чурикова И.В., Чудина А.А.

The information on the technology of passive and active seismic using the common-depth-point method (hereinafter “the PAS CDPM”), solving the problem of direct explorationof hydrocarbon accumulations using the amplitude information of induced geodynamic noise emitted by these accumulations is containing.It is shown that the use of this technology can prevent drilling of nonproductive wells. Materials and methods The proposed PAS CDPM technology complexes registration and interpretation of inducedgeodynamic noises emitted by hydrocarbon accumulations, and waves reflected from the seismic horizons. This provides high efficiency of studying of reflectors geometryand registration of induced geodynamic noises emitted by hydrocarbon accumulations. Results The PAS CDPM technology tested in dozens of hydrocarbon accumulations of Western and Eastern Siberia has proven its efficiency, namely all accumulations have displayedintensity anomalies of geodynamic noises, and no such anomalies have been observed outside accumulations. Сonclusions The above mentioned PAS CDPM technology capability is relevant nowadays, whenthe economic crisis is gathering pace. The defined technology will make it possible for petroleum experts to drill traps instead of drilling structures that will increaseseveralfold efficiency of oil and gas geologic exploration.

Текст научной работы на тему «Геодинамический шум залежей углеводородов и пассивно-активная сейсморазведка мОГТ»

ГЕОФИЗИКА

Геодинамический шум залежей углеводородов и пассивно-активная сейсморазведка мОГТ

Л.А. максимов

к. г.-м.н., ст. преподаватель1 [email protected]

Г.В. Ведерников

д. г.-м.-н., зам. директора по науке2 [email protected]

Г.Н. Яшков

гл. геофизик2 [email protected]

Новосибирский Государственный Университет, Новосибирск, Россия 2ООО «НМТ-Сейс», Новосибирск, Россия

Приводятся сведения о технологии пассивно-активной сейсморазведки методом общей глубинной точки (ПАС мОГТ), решающей задачу прямого поиска залежей углеводородов по динамическим параметрам, излучаемых этими залежами наведенного геодинамического шума. Показано, что использование этой технологии позволяет предотвратить бурение непродуктивных скважин.

материалы и методы

В предлагаемой технологии ПАС МОГТ комплексируются регистрация и интерпретация излучаемых залежами УВ наведенных геодинамических шумов и отраженных от сейсмических границ волн. Этим обеспечивается высокая эффективность изучения геометрии отражающих границ и регистрации излучаемых залежами УВ наведенных геодинамических шумов.

Ключевые слова

сейсморазведка МОГТ, прямой поиск залежей углеводородов, наведенный геодинамический шум, коэффициент успешности поисково-разведочного бурения

Главной задачей применяющихся в настоящее время сейсмических методов является изучение пространственного распределения физических параметров и показателей спонтанной сейсмической активности .

Сейсморазведка сегодня - основной метод подготовки объектов под поисково-разведочное бурение. Она с достаточной степенью достоверности выявляет структуры, которые при определенных благоприятных условиях могут содержать залежи нефти, а могут их и не содержать. Подтвердит эту неопределенность только скважина, но какой ценой?

Успешность поисков залежей нефти и газа как была в пределах 10...30% в прошлом (в СССР и США), так и держится в этих пределах сегодня (рис. 1) . И будет держаться завтра и послезавтра, и до тех пор, пока нефтяники от поисков структур не перейдут к поискам нефтесодержащих ловушек. Смысл повышения эффективности поисково-разведочных работ сводится к очевидной задаче - к разделению структур, выявленных сейсморазведкой, на продуктивные и непродуктивные ловушки нефти и газа. Если решается эта задача, то происходит экономия огромных средств, которые тратятся на поисково-разведочное бурение на заведомо непродуктивных структурах.

Известно, что нефтегазовые залежи, будучи неустойчивыми термодинамическими системами, излучают повышенный уровень спонтанных и наведенных геодинамических шумов . Для анализа таких шумов с целью прямого поиска залежей углеводородов (УВ) может использоваться инновационная технология пассивно-активной сейсморазведки методом общей глубинной точки (ПАС МОГТ), разработанная в ООО «НМТ-Сейс» (аналог активного варианта технологии АНЧАР ).

Современная стандартная сейсморазведка МОГТ по своей сути является пассивно-активной. Действительно, на сейсмической трассе на участке до первых вступлений регулярных волн регистрируются микросей-смы и геодинамические шумы - пассивная составляющая записи. На остальной части записи совместно с микросейсмами и геодинамическими шумами регистрируются колебания регулярных волн - активная составляющая записи, содержащая информацию о геометрии сейсмических границ в земной толще. Пассивная составляющая содержит информацию о наличии (отсутствии) залежей УВ, излучающих геодинамические шумы.

В предлагаемой технологии ПАС МОГТ комплексируются регистрация и

Рис. 1 - Динамика изменения коэффициента успешности (в %) при бурении поисковых и разведочных скважин в США

Рис. 2 - Временной сейсмический разрез (А), амплитудно-частотный спектр микросейсм (Б) и графики интенсивности спектра в полосах частот (В)

интерпретация излучаемых залежами УВ искусственно наведенных геодинамических шумов и отраженных от сейсмических границ волн. Этим обеспечивается как высокая эффективность изучения геометрии отражающих границ и скоростей между ними за счет многократного прослеживания отраженных от этих границ волн, так и высокая эффективность поиска залежей УВ за счет многократного воздействия на них сейсмическими волнами и регистрации излучаемых ими наведенных геодинамических шумов. Важное достоинство метода заключается в возможности независимого параллельного извлечения информации из волновых полей, имеющих принципиально различную природу и зарегистрированных практически одновременно в одном месте. В принципе, технология ПАС МОГТ является одной из модификаций многоволновой сейсморазведки, в более широком понимании термина «многоволновая сейсморазведка» - то есть, не только волны различной поляризации. Таким образом, проведя совместную интерпретацию отраженных волн и шумов, будем иметь информацию о геометрии границ в среде и наличии в среде УВ, т. е. имеем возможность решать задачу прямых поисков ловушек УВ, а не структур, как делается сегодня. И этот момент весьма принципиальный, поскольку появляется воз-можностьрешатьосновную задачу в поисково-разведочном бурении. При этом резко (в разы) повышается успешность бурения.

Технология ПАС МОГТ опробована на десятках месторождений УВ Западной и Восточной Сибири и показала свою эффективность: все месторождения отмечаются аномалиями

интенсивности геодинамических шумов (рис. 2) и отсутствием таких аномалий вне месторождений (рис. 3).

В течение последних 7 лет были выполнены по Государственным контрактам совместно с ФГУП СНИИГГиМС работы по прогнозу зон нефтегазонакопления в Западной и Восточной Сибири в объеме свыше 13 тыс. пог. км профилей и показана эффективность использования технологии ПАС МОГТ на всех этапах геолого-разведочных работ:

При региональных работах - выявление перспективных участков для поисковых и разведочных работ;

На предразведочном этапе - подготовка пакетов информации для лицензирования участков недр;

При поисково-разведочных работах

Выявление и ранжирование перспективных объектов, особенно неантиклинального типа;

При планировании буровых работ

Принципиальной особенностью технологий ПАС МОГТ является возбуждение колебаний и регистрация микросейсм и регулярных волн по методике многократных перекрытий. Следствием этого являются следующие уникальные достоинства этих технологий по сравнению с технологией АНЧАР: 1. Производится многократное (а не однократное) импульсно-волновое (а не моногармоническое) длительное внешнее

воздействие на залежи УВ волнами, создаваемыми техногенным источником. Кратность такого воздействия равна кратности системы наблюдения МОГТ. Длительность воздействия при среднем интервале времени возбуждения колебаний от ПВ к ПВ, равном 2-3 мин, составляет 60-180 мин (1-3 часа). В итоге на залежи УВ в течение 1-3 ч воздействует непрерывный цуг сейсмических волн с периодически повторяющимся через каждые 2-3 мин повышением их интенсивности. Это обеспечивает более высокую, в полосе частот до 40 Гц, интенсивность наведенного геодинамического шума от залежей УВ, регистрация которого возможна стандартной сейсмической аппаратурой.

2. Регистрация микросейсм производится многоканальной системой наблюдения МОГТ, что обеспечивает высокую плотность ПП на профиле при длительности регистрации микросейсм на каждом ПП около 2-6 часов. Это

на порядок и более увеличивает объем получаемой информации о геодинамических шумах и, повышает надежность и точность их выделения без дополнительных затрат на такие работы.

3. Данную технологию можно осуществлять и по результатам ранее проведенных работ МОГТ, используя фондовые материалы. Это позволило с 2006 по 2014 гг. без затрат на специальные полевые работы обработать по этой технологии данные МОГТ в объеме около 13 000 пог. км, полученных на многих площадях

Рис. 3 - Временной сейсмический разрез (А) и характеристики микросейсм (Б, В) на участке непродуктивных скважин

Рис. 5 - Расположение зон 1-5 геодинамических шумов и структурный план пласта Б10 на Аленкинском ЛУ

Рис. 4 - Типичный пример расположения залежи УВ на крыльях складки. Юг Западно-Сибирской низменности

Рис. 6 - Временной разрез (А) и спектр шумов (Б) в зоне перехода от нефтяной к газовой залежи

Западной и Восточной Сибири, в том числе, на площадях более 30 известных месторождений с наличием более 200 продуктивных и «пустых» скважин. Было установлено, что по местоположению участков (на профиле) и зон (на площади) геодинамических шумов можно определить контуры залежей УВ (рис. 2) и тип ловушек (антиклинальный, неантиклинальный) (рис. 4, 5). По таким особенностям спектра шумов, как общая их интенсивность, преобладающая частота и модальность можно осуществить прогноз относительного объема запасов УВ в объекте и прогноз о наличии типа флюидов (нефть, газ, конденсат) в объекте (рис. 6).

Указанные выше возможности технологии ПАС МОГТ весьма актуальны в настоящее время, когда кризис в экономике продолжает усиливаться. Использование этой технологии позволит нефтяникам бурить ловушки УВ, а не структуры, что повысит эффективность геолого-разведочных работ (в разы) при поисках нефти и газа.

В России пробурено в 2013 г. 6500 поисково-разведочных скважин, в 2014 г. - 5850 скважин. Стоимость бурения одной поисково-разведочной скважины в РФ составляет от

100 до 500 млн руб. в зависимости от географического положения скважины, конструкции, существующей инфраструктуры и т.д.; средняя стоимость около 300 млн руб. При успешности бурения 10..30% в 2013 году из пробуренных 6500 скважин 3900 скважин оказались непродуктивными, на их бурение было затрачено около 1,2 трлн руб.

Технология ПАС МОГТ опробована на десятках месторождений УВ Западной и Восточной Сибири и показала свою эффективность: все месторождения отмечаются аномалиями интенсивности геодинамических шумов и отсутствием таких аномалий вне месторождений.

Указанные выше возможности технологии ПАС МОГТ весьма актуальны в настоящее время, когда кризис в экономике продолжает усиливаться. Данная технологии позволит нефтяникам бурить ловушки УВ, а не структуры, что повысит эффективность геолого-разведочных работ (в разы) при поисках нефти и газа.

Список используемой литературы

1. Пузырев Н.Н. Методы и объекты

сейсмических исследований. Введение в общую сейсмологию. Новосибирск: СО

РАН; НИЦ ОИГГМ, 1997. 301 с.

2. Тимурзиев А.И. Современное состояние практики и методологии поисков нефти - от заблуждений застоя к новому мировоззрению прогресса // Геология, геофизика и разработка нефтяных и газовых месторождений. 2010. №11.

3. Графов Б.М., Арутюнов С. А., Казаринов

B.Е., Кузнецов О.Л., Сиротинский Ю.В., Сунцов А.Е. Анализ геоакустического излучения нефтегазовой залежи при использовании технологии АНЧАР// Геофизика. 1998. №5. С. 24-28.

4. Патент № 2 263 932 С1 в 01 У/00 Российская Федерация. Способ сейсмической разведки. Заявл. 30.07.2004.

5. Ведерников Г.В. Методы пассивной сейсморазведки //Приборы и системы разведочной геофизики. 2013. №2.

6. Ведерников Г.В., Максимов Л. А., Чернышова Т.И., Чусов М.В. Инновационные технологии. О чем говорит опыт сейсморазведочных работ на Шушукской площади //Геология и минерально-сырьевые ресурсы Сибири. 2015. №2 (22). С. 48-56.

Geodynamical noise of hydrocarbon pools and passive and active seismic CDPM

Leonid A. Maksimov - Ph. D., lecturer1; [email protected] Gennadiy V. Vedernikov - Sc. D., deputy of science work2; [email protected] Georgiy N. Yashkov - chief geoscientist2; [email protected]

Novosibirsk State University, Novosibirsk, Russian Federation 2«NMT-Seis» LLC, Novosibirsk, Russian Federation

The information on the technology of passive and active seismic using the common-depth-point method (hereinafter "the PAS CDPM"), solving the problem of direct exploration of hydrocarbon accumulations using the amplitude information of induced geodynamic noise emitted by these accumulations is containing.

It is shown that the use of this technology can prevent drilling of nonproductive wells.

Materials and methods

The proposed PAS CDPM technology complexes registration and interpretation of induced

geodynamic noises emitted by hydrocarbon accumulations, and waves reflected from the seismic horizons. This provides high efficiency of studying of reflectors geometry and registration of induced geodynamic noises emitted by hydrocarbon accumulations.

The PAS CDPM technology tested in dozens of hydrocarbon accumulations of Western and Eastern Siberia has proven its efficiency, namely all accumulations have displayed intensity anomalies of geodynamic noises, and no such anomalies have been observed outside accumulations.

The above mentioned PAS CDPM technology capability is relevant nowadays, when the economic crisis is gathering pace. The defined technology will make it possible for petroleum experts to drill traps instead of drilling structures that will increase severalfold efficiency of oil and gas geologic exploration.

CDPM seismic, direct hydrocarbon exploration, induced geodynamic noise, prospecting and exploratory drilling success ratio

1. Puzyrev N.N. Metody i ob"ekty seysmicheskikh issledovaniy. Vvedenie v obshchuyu seysmologiyu . Novosibirsk: SO RAN; NITs OIGGM, 1997, 301 p.

2. Timurziev A.I. Sovremennoe sostoyanie praktiki i metodologii poiskov nefti

Otzabluzhdeniyzastoya k novomu mirovozzreniyu progressa . Geologiya,

geofizika i razrabotka neftyanykh i gazovykh mestorozhdeniy, 2010, issue 11, pp. 20-31.

3. Grafov B.M., Arutyunov S.A., Kazarinov V.E., Kuznetsov O.L., Sirotinskiy Yu.V., Suntsov A.E. Analiz geoakusticheskogo izlucheniya neftegazovoyzalezhi pri ispol"zovanii tekhnologiiANChAR . Geofizika, 1998, issue 5, pp. 24-28.

4. Patent Russian Federation №2 263 932 CI G 01 V/00 Sposob seysmicheskoy razvedki . Declared 30.07.2004.

5. Vedernikov G.V. Metody passivnoy ceysmorazvedki . Pribory i sistemy razvedochnoygeofiziki, 2013, issue 2, pp. 30-36.

6. Vedernikov G.V., Maksimov L.A., Chernyshova T.I., Chusov M.V. Innovatsionnye tekhnologii. O chem govorit opytseysmorazvedochnykh rabot na Shushukskoy ploshchadi . Geologiya i mineral"no-syr"evye resursy Sibiri, 2015, issue 2 (22), pp. 48-56.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное агентство по образованию

ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Институт природных ресурсов

Курсовой проект

по курсу "Сейсморазведка"

Методика и техно логия сейсморазведочных работ МОГТ

Выполнил: студент гр. 2А280

Севервальд А.В.

Проверил:

Резяпов Г.И.

Томск -2012

  • Введение
  • 1. Теоретические основы метода общей глубинной точки
    • 1.1 Теория метода ОГТ
    • 1.2 Особенности годографа ОГТ
    • 1.3 Интерференционная система ОГТ
  • 2. Расчет оптимальной системы наблюдений метода ОГТ
  • 2.1 Сейсмологическая модель разреза и ее параметры
    • 2.2 Расчет системы наблюдений метода ОГТ
    • 2.3 Расчет годографов полезных волн и волн-помех
    • 2.4 Расчет функции запаздывания волн-помех
    • 2.5 Расчет параметров оптимальной системы наблюдений
  • 3. Технология полевых сейсморазведочных работ
    • 3.1 Требования к сети наблюдений в сейсморазведке
    • 3.2 Условия возбуждения упругих волн
    • 3.3 Условия приема упругих волн
    • 3.4 Выбор аппаратурных средств и спецоборудования
    • 3.5 Организация полевых сейсморазведочных работ
  • Заключение
  • Список литературы

Введение

Сейсморазведка является одним из ведущих методов исследования структуры, строения и состава горных пород. Главной сферой применения является поиск месторождений нефти и газа.

Целью данной курсовой работы является закрепление знаний по курсу "сейсморазведка"

Задачами данной курсовой работы являются:

1) рассмотрение теоретических основ метода ОГТ;

2)составление сейсмогеологической модели, на основе которой рассчитываются параметры системы наблюдений ОГТ-2D;

3)рассмотрение технологии проведения сейсморазведочных работ;

1. Теоретические основы метода общей глубинной точки

1.1 Теория метода ОГТ

Метод (способ) общей глубинной точки (МОГТ) -- модификация МОВ, основанная на системе многократных перекрытий и отличающаяся суммированием (накапливанием) отражений от общих участков границы при различных расположениях источников и приемников. Метод ОГТ базируется на допущении о коррелируемости волн, возбужденных удаленными на разное расстояние источниками, но отразившимися от общего участка границы. Неминуемые различия спектров разных источников и погрешности во временах при суммировании требуют понижения спектров полезных сигналов. Основное преимущество метода ОГТ состоит в возможности усиления однократно отраженных волн на фоне многократных и обменных отраженных волн путем уравнивания времен отраженных от общих глубинных точек и их суммирования. Специфические особенности метода ОГТ определяются свойствами направленности при суммировании, избыточностью данных и статистическим эффектом. Они наиболее успешно реализуются при цифровой регистрации и обработке первичных данных.

Рис. 1.1 Схематическое изображение элемента системы наблюдений и сейсмограммы, полученной методом ОГТ.А иА" -- оси синфазности отраженной однократной волны соответственно до и после введения кинематической поправки; В и В" -- ось синфазности многократной отраженной волны соответственно до и после введения кинематической поправки.

Рис. 1.1 иллюстрирует принцип суммирования по ОГТ на примере системы пятикратного перекрытия. Источники упругих волн и приемники располагаются на профиле симметрично проекции на нее общей глубинной точки R горизонтальной границы. Сейсмограмма, составленная из пяти записей, полученных в пунктах приема 1, 3, 5, 7, 9 (счет пунктов приема начинается от своего пункта возбуждения) при возбуждении в пунктах V, IV, III, II, I, показана над линией CD. Она образует сейсмограмму ОГТ, а годографы прокоррелированных на ней отраженных волн -- годографы ОГТ. На обычно применяемых в методе ОГТ базах наблюдения, не превышающих 3 км, годограф ОГТ однократно отраженной волны сдостаточной точностью аппроксимируется гиперболой. При этом минимум гиперболы близок к проекции на линию наблюдения общей глубинной точки. Это свойство годографа ОГТ во многом определяет относительную простоту и эффективность обработки данных.

Для преобразования совокупности сейсмических записей во временной разрез в каждую сейсмограмму ОГТ вводят кинематические поправки, величины которых определяются скоростями сред, покрывающих отражающие границы, т. е. они рассчитываются для однократных отражений. В результате ввода поправок оси синфазностей однократных отражений трансформируются в линии t 0 = const. При этом оси синфазностей регулярных волн-помех (многократных, обменных волн), кинематика которых отличается от введенных кинематических поправок, трансформируются в плавные кривые. После введения кинематических поправок трассы исправленной сейсмограммы одновременно суммируют. При этом однократно отраженные волны складываются в фазе и таким образом подчеркиваются, а регулярные помехи, и среди них в первую очередь многократно отраженные волны, складываемые с фазовыми сдвигами, ослабляются. Зная кинематические особенности волны-помехи, можно заранее рассчитать параметры системы наблюдений методом ОГТ (длину годографа ОГТ, число каналов на сейсмограмме ОГТ, равное кратности прослеживания) при которых обеспечивается требуемое ослабление помехи.

Сейсмограммы ОГТ формируют путем выборки каналов с сейсмограммы от каждого пункта возбуждения (называемых сейсмограммами общего пункта возбуждения - ОПВ) в соответствии с требованиями элемента системы, приведенного на рис. 1., где показаны: первая запись пятого пункта возбуждения, третья запись четвертого и т. д. до девятой записи первого пункта возбуждения.

Указанная процедура непрерывных выборок вдоль профиля возможна лишь при многократном перекрытии. Она соответствует наложению временных разрезов, получаемых независимо от каждого пункта возбуждения, и свидетельствует об избыточности информации, реализуемой в методе ОГТ. Эта избыточность является важной особенностью метода и лежит в основе уточнения (коррекции) статических и кинематических поправок.

Скорости, требуемые для уточнения вводимых кинематических поправок, определяют по годографам ОГТ. Для этого сейсмограммы ОГТ с рассчитанными приблизительно кинематическими поправками подвергаются разновременному суммированию с дополнительными нелинейными операциями. По суммолентам ОГТ, помимо определения эффективных скоростей однократно отраженных волн, находят кинематические особенности волн-помех для расчета параметров приемной системы. Наблюдения методом ОГТ проводят вдоль продольных профилей.

Для возбуждения волн применяют взрывные и ударные источники, которые требуют наблюдений с большой (24--48) кратностью перекрытий.

Обработка данных МОГТ на ЭВМ делится на ряд этапов, каждый из которых заканчивается выводом результатов для принятия решения интерпретатором 1) предварительная обработка; 2) определение оптимальных параметров и построение окончательного временного разреза; З) определение скоростной модели среды; 4) построение глубинного разреза.

Системы многократных перекрытий составляют в настоящее время основу полевых наблюдений (сбора данных) в МОВ и определяют развитие метода. Суммирование по ОГТ является одной из главных и эффективных процедур обработки, которые можно реализовать на базе этих систем. Метод ОГТ является основной модификацией МОВ при поисках и разведке нефтяных и газовых месторождений практически во всех сейсмогеологических условиях. Однако результатам суммирования по ОГТ свойственны некоторые ограничения. К ним относятся: а) существенное снижение частоты регистрации; б) ослабление свойства локальности МОВ за счет увеличения объема неоднородного пространства при больших удалениях от источника, характерных для метода ОГТ и необходимых для подавления многократных волн; в) наложение однократных отражений от близких границ вследствие свойственного им сближения осей синфазности при больших удалениях от источника; г) чувствительность к боковым волнам, мешающим прослеживанию целевых субгоризонтальных границ вследствие расположения основного максимума пространственной характеристики направленности суммирования в плоскости, перпендикулярной к базе суммирования (профилю).

Указанные ограничения в целом обусловливают тенденцию снижения разрешающей способности МОВ. Учитывая распространенность метода ОГТ, их следует учитывать в конкретных сейсмогеологических условиях.

1.2 Особенности годографа ОГТ

Рис. 1.2 Схема способа ОГТ для наклонного залегания отражающей границы.

1. годограф ОГТ однократно-отраженной волны для однородной покрывающей среды представляет собой гиперболу с минимумом в точке симметрии (точке ОГТ);

2. с увеличением угла наклона границы раздела крутизна годографа ОГТ и соответственно приращение времени уменьшаются;

3. форма годографа ОГТ не зависит от знака угла наклона границы раздела (эта особенность вытекает из принципа взаимности и является одним из главных свойств симметричной системы взрыв - прибор;

4. для данного t 0 годограф ОГТ является функцией только одного параметра - v ОГТ, который называется фиктивной скоростью.

Указанные особенности означают, что для аппроксимации наблюденного годографа ОГТ гиперболой необходимо подобрать удовлетворяющее данномуt 0 значение v ОГТ, определяемое по формуле (v ОГТ =v/cosц). Это важное следствие позволяет легко реализовать поиск оси синфазности отраженной волны путем анализа сейсмограммы ОГТ по вееру гипербол, имеющих общее значение t 0 и различные v ОГТ.

1.3 Интерференционная система ОГТ

В интерференционных системах процедура фильтрации состоит в суммировании сейсмических трасс вдоль заданных линий ф(х) с весами, постоянными для каждой трассы. Обычно линии суммирования соответствуют форме годографов полезных волн. Взвешенное суммирование колебаний разных трасс y n (t) является частным случаем многоканальной фильтрации, когда операторы индивидуальных фильтров h n (t) представляют собой д-функции с амплитудами, равными весовым коэффициентам d n:

(1.1)

где ф m - n -разность времен суммирования колебаний на трассе m, к которой относят получаемый результат, и на трассе n.

Соотношению (1.1) придадим более простую форму, учитывая, что результат не зависит от положения точки т и определяется временными сдвигами трасс ф n относительно произвольного начала отсчета. Получим несложную формулу, описывающую общий алгоритм интерференционных систем,

(1.2)

Их разновидности отличаются характером изменения весовых коэффициентов d n и временных сдвигов ф n: те и другие могут быть постоянными или переменными в пространстве, а последние, кроме того, могут изменяться и во времени.

Пусть на сейсмических трассах регистрируется идеально регулярная волна g(t,x) с годографом вступления t(x)=t n:

годограф сейсмологический интерференционный волна

Подставляя это в (1.2), получаем выражение, описывающее колебания на выходе интерференционных системы,

где и n =t n - ф n .

Величины и n определяют отклонение годографа волны от заданной линии суммирования. Найдем спектр профильтрованных колебаний:

Если годограф регулярной волны совпадает с линией суммирования (и n ?0), то происходит синфазное сложение колебаний. Для этого случая, обозначаемого и=0, имеем

Интерференционные системы строят с целью усиления синфазно суммируемых волн. Для достижения такого результата необходимо, чтобы H 0 (щ) было максимальным значением модуля функции H и (щ) .Чаще всего применяют одинарные интерференционные системы, имеющие для всех каналов равные веса, которые можно считать единичными: d n ?1. В таком случае

В заключение отметим, что суммирование неплоских волн можно осуществлять с помощью сейсмических источников путем введения соответствующих задержек в моменты возбуждения колебаний. На практике эти виды интерференционных систем реализуют в лабораторном варианте, вводя необходимые сдвиги в записи колебаний от отдельных источников. Сдвиги можно подбирать таким образом, чтобы фронт падающей волны имел форму, оптимальную с точки зрения повышения интенсивности волн, отраженных или дифрагированных от локальных участков сейсмогеологического разреза, представляющих особый интерес. Такая методика известна как фокусирование падающей волны.

2. Расчет оптимальной системы наблюдений метода ОГТ

2.1 Сейсмологическая модель разреза и ее параметры

Сейсмогеологическая модель имеет следующие параметры:

Рассчитываем коэффициенты отражения и коэффициенты двойного прохождения по формулам:

Получаем:

Задаем возможные варианты прохождения волн по данному разрезу:

На основании этих расчетов строим теоретический вертикальный сейсмический профиль (рис. 2.1) на котором отражаются основные типы волн, возникающих в конкретных сейсмогеологических условиях.

Рис. 2.1. Теоретический вертикальный сейсмический профиль (1 - полезная волна, 2,3 - кратные волны - помехи, 4,5 - кратные волны, не являющиеся помехами).

Для целевой четвертой границы используем волну номер 1 - полезная волна. Волны со временем прихода -0,01-+0,05 от времени "целевой" волны являются интерференционными волнами помехами. В данном случаем, волны номер 2 и 3. Все остальные волнами помехами не будут.

Рассчитаем время двойного пробега и среднюю скорость по разрезу для каждого пласта по формуле (3.4) и строим скоростную модель.

Получаем:

Рис. 2.2. Скоростная модель

2.2 Расчет системы наблюдений метода ОГТ

Амплитуды полезных отраженных волн от целевой границы рассчитываются по формуле:

(2.5)

где А п - коэффициент отражения целевой границы.

Амплитуды кратных волн рассчитываются по формуле:

.(2.6)

При отсутствии данных по коэффициенту поглощения принимаем =1.

Рассчитываем амплитуды кратных и полезной волн:

Наибольшей амплитудой обладает кратная волна 2. Полученные значения амплитуды целевой волны и помехи позволяют вычислить требуемую степень подавления кратной волны.

Поскольку

2.3 Расчет годографов полезных волн и волн-помех

Расчет годографов кратных волн ведется при упрощающих предположениях о горизонтально-слоистой модели среды и плоских границах. В этом случае многократные отражения от нескольких границ раздела можно заменить однократным отражением от некоторой фиктивной границы.

Средняя скорость фиктивной среды вычисляется по всему пути вертикального пробега кратной волны:

(2.7)

Время определяется по схеме образования кратной волны на теоретическом ВСП или суммированием времен пробега во всех пластах.

(2.8)

Получаем следующие значения:

Годограф кратной волны вычисляется по формуле:

(2.9)

Годограф полезной волны рассчитывается по формуле:

(2.10)

Рис 2.3 Годографы полезной волны и волны-помехи

2.4 Расчет функции запаздывания волн-помех

Введем кинематические поправки, рассчитанные по формуле:

?tк(х, to) = t(х) - to(2.11)

Функцию запаздывания кратной волны (х) определяют по формуле:

(х) = t кр(хi) - t окр (2.12)

где t кр(хi) - исправленное за кинематику время и t окр -время при нулевом удалении пункта приема от пункта возбуждения.

Рис 2.4 Функция запаздывания кратной волны

2.5 Расчет параметров оптимальной системы наблюдений

Оптимальная система наблюдений должна обеспечивать наибольший результат при низких материальных затратах. Необходимая степень подавления помех D=5, нижняя и верхняя частоты спектра волны помехи составляют 20 и 60 Гц соответственно.

Рис. 2.5 Характеристика направленности суммирования по ОГТ при N = 24.

По набору характеристик направленности минимальное число кратности N=24.

(2.13)

Зная P снимаем y min =4и y max =24,5

Зная минимальную и максимальную частоту, 20 и 60 Гц соответственно рассчитаем ф max .

f min *ф max =4ф max =0,2

f max *ф max =24,5ф max =0,408

Величина функции запаздывания ф max =0,2, что соответствует x max =3400 (см. рис.2.4). После выноса первого канала от пункта возбуждения, x m in =300,cтрела прогиба Д=0,05, Д/ф max =0,25 что удовлетворяет условию. Это говорит об удовлетворительности выбранной характеристики направленности, параметрами которой являются величины N=24, ф max =0,2,x m in =300 м и максимальное удаление x max =3400 м.

Теоретическая длина годографа H*= x max - x min =3100м.

Практическая длина годографа Н = K*?х, где K - число каналов, регистрирующей сейсмостанции и?х- шаг между каналами.

Возьмем сейсмостанцию с 24 каналами (K=24=N*24), ?х =50.

Пересчитаем интервал наблюдения:

Рассчитаем интервал возбуждения:

В итоге, получаем:

Система наблюдений на развернутом профиле представлена на рис.2.6

3. Технология полевых сейсморазведочных работ

3.1 Требования к сети наблюдений в сейсморазведке

Системы наблюдений

В настоящее время в основном применяют системы многократных перекрытий (СМП), обеспечивающей суммирование по общей глубинной точке (ОГТ), и тем самым резкое повышение соотношения сигнал/помеха. Применение не продольных профилей сокращает затраты на полевые работы и резко повышает технологичность полевых работ.

В настоящее время практически используются только полные корреляционные системы наблюдений, позволяющие проводить непрерывную корреляцию полезных волн.

При рекогносцировочной съемке и на стадии опытных работ с целью предварительного изучения волнового поля в районе исследований применяют сейсмозондирования. Система наблюдений при этом должна обеспечивать получение информации о глубинах и углах наклона исследуемых отражающих границ, а также определение эффективных скоростей. Различают линейные, представляющие собой короткие отрезки продольных профилей, и площадные (крестовые, радиальные, круговые) сейсмозондирования, когда наблюдения производят на нескольких (от двух и более) пересекающихся продольных или не продольных профилях.

Из линейных сейсмозондирований наибольшее применение получили зондирования общей глубинной точки (ОГТ), представляющие собой элементы системы многократного профилирования. Взаимное расположение пунктов возбуждения и участков наблюдений выбирают таким образом, чтобы записывались отражения от одного итого же участка изучаемой границы. Получаемые при этом сейсмограммы монтируют.

На системах многократного профилирования (перекрытия) основан метод общей глубинной точки, при котором используют центральные системы, системы с изменяющимся пунктом взрыва в пределах базы приема, фланговые односторонние без выноса и с выносом пункта взрыва, а также фланговые двухсторонние (встречные) системы без выноса и с выносом пункта взрыва.

Наиболее удобны для производственных работ и обеспечивают максимальную производительность системы, при реализации которых база наблюдений и пункт возбуждения смещаются после каждого взрыва в одном направлении на равные расстояния.

Для прослеживания и определения элементов пространственного залегания крутопадающих границ, а также трассирования тектонических нарушений целесообразно применить сопряженные профили. которые почти параллельны, а расстояние между ними выбирают из расчета обеспечения непрерывной корреляции волн, они составляют 100-1000 м.

При наблюдении на одном профиле ПВ располагают на другом, и наоборот. Такая система наблюдений обеспечивает непрерывную корреляцию волн по сопряженным профилям.

Многократное профилирование по нескольким (от 3 до 9) сопряженным профилям составляет основу способа широкого профиля. Пункт наблюдения при этом располагают на центральном профиле, а возбуждения производят последовательно с пунктов, находящихся на параллельных сопряженных профилях. Кратность прослеживания отражающих границ по каждому из параллельных профилей может быть различной. Общая кратность наблюдений определяется произведением кратности по каждому из сопряженных профилей на их общее число. Увеличение затрат на проведение наблюдений по столь сложным системам оправдывается возможностью получения информации о пространственных особенностях отражающих границ.

Площадные системы наблюдений, построенные на основе крестовой расстановки, обеспечивают площадную выборку трасс по ОГТ за счет последовательного перекрытия крестообразных расстановок, источников и приемников, Если шаг источников дy и сейсмоприемников дx одинаков, а сигналы, возбуждаемые в каждом источнике, принимаются всеми сейсмоприемниками, то в результате такой обработки формируется поле из 576 средних точек. Если последовательно смещать расстановку сейсмоприемников и пересекающую ее линию возбуждения вдоль оси x на шаг дx и повторить регистрацию, то в результате будет достигнуто 12-кратное перекрытие, ширина которой равна половине базы возбуждения и приема вдоль оси y на шаг дy достигается дополнительное 12-кратное перекрытие, а общее перекрытие составит 144.

На практике применяют более экономичные и технологичные системы, например 16-кратную. Для ее реализации используют 240 каналов записи и 32 пункта возбуждения, Показанное на рис.6 фиксированное распределение источников и приемников называют блоком, После приема колебаний от всех 32 источников блок смещают на шаг дx, вновь повторяют прием от всех 32 источников и т.д. Таким образом, отрабатывают всю полосу вдоль оси x от начала идо конца площади исследований. Следующую полосу из пяти линий приема размещают параллельно предыдущей таким образом, чтобы расстояние между соседними (ближайшими) линиями приема первой и второй полос равнялось расстоянию между линиями приема в блоке. В этом случае линии источников первой и второй полос перекрываются на половину базы возбуждения и т.д. Таким образом, в данном варианте системы линии приема не дублируются, а в каждой точке источника сигналы возбуждаются дважды.

Сети профилирования

Для каждой разведочной площади существует предел числа наблюдений, ниже которого невозможно построение структурных карт и схем, а также верхний предел, выше которого точность построений не увеличивается. На выбор рациональной сети наблюдений влияют следующие факторы: форма границ, диапазон изменения глубин залегания, погрешности измерения в точках наблюдения, сечения сейсморазведочных карт и другие. Точные математические зависимости пока не найдены в связи с чем пользуются приближенными выражениями.

Различают три стадии сейсморазведочных работ: региональную, поисковую и детальную. На стадии региональных работ профили стремятся направлять в крест простирания структур через 10-20 км. От этого правила отступают при проведении связующих профилей и увязке со скважинами.

При поисковых работах расстояние между соседними профилями не должно превышать половины предполагаемой длины большой оси исследуемой структуры, обычно оно составляет не более 4 км. При детальных исследованиях густота сети профилей в разных частях структуры различна и не превышает обычно 4 км. При детальных исследованиях густота сети профилей в разных частях профилей различна и не превышает обычно 2 км. Сеть профилей сгущают в наиболее интересных местах структуры (свод, линии нарушения, зоны выклинивания и т.д.). Максимальное расстояние между связующими профилями не превышает удвоенного расстояния между разведочными профилями. При наличии разрывных нарушений на площади исследования в каждом из крупных блоков усложняют сеть профилей для создания замкнутых полигонов. Если размеры блоков небольшие, то проводят только связующие профили, Соляные купола разведывают по радиальной сети профилей с их пересечением над сводом купола, связующие профили проходят по периферии купола, связующие профили проходят по периферии купола.

При проведении сейсмических на площади, где ранее выполнялись сейсмические исследования, сеть новых профилей должна частично повторять старые профили для сопоставления качества старого и нового материалов, При наличии на изучаемой площади скважин глубокого бурения они должны быть увязаны в общей сети сейсмических наблюдений, и пункты взрыва и приема должны располагаться вблизи скважин.

Профили должны быть по возможности прямолинейными с учетом минимальных сельскохозяйственных потрав. При работах по МОГТ на угол излома профиля должны быть изложены ограничения, поскольку угол наклона и направление падения границ могут быть оценены до начала полевых работ лишь приблизительно, а учет и корреляция этих величин в процессе суммирования представляют значительные трудности. Если принимать во внимание только искажение кинематики волн, то допустимый угол излома можно оценить по соотношению

б=2arcsin(vср?t0/xmaxtgf),

где?t=2?H/vср - приращение времени по нормали к границе;xmax - максимальная длина годографа; f - угол падения границы. Зависимость величины б как функции обобщенного аргумента vсрt0/tgf для различных xmax (от 0,5 до 5 км) показана на (рис.4), который можно использовать как палетку для оценки допустимых значений угла излома профиля при конкретных предположениях о строении среды. Задавшись допустимой величиной расфазирования слагаемых импульсов (например, ј периода T), можно рассчитать значение аргумента для максимально возможного угла падения границы и минимально возможной средней скорости распространения волн. Ордината прямой с xmax при этом значении аргумента укажет величину максимально допустимого угла излома профиля.

Для установления точного расположения профилей еще во время проектирования работ проводят первую рекогносцировку. Детальную рекогносцировку осуществляют в период полевых работ.

3.2 Условия возбуждения упругих волн

Возбуждение колебаний осуществляется с помощью взрывов (заряды ВВ или линии ДШ) или невзрывных источников.

Способы возбуждения колебаний выбираются в соответствии с условиями, задачами и методикой проведения полевых работ.

Оптимальный вариант возбуждения выбирается на основании практики предшествующих работ и уточняется путём изучения волнового поля в процессе опытных работ.

Возбуждение взрывными источниками

Взрывы производятся в скважинах, шурфах, в щелях, на поверхности земли, в воздухе. Применяется только электрический способ взрывания.

При взрывах в скважинах наибольший сейсмический эффект достигается при погружении заряда ниже зоны малых скоростей, при взрыве в пластичных и обводненных породах, при укупорке зарядов в скважинах водой, буровым раствором или грунтом.

Выбор оптимальных глубин взрыва осуществляется по наблюдениям МСК и результатам опытных работ

В процессе полевых наблюдений на профиле следует стремиться поддерживать постоянство (оптимальность) условий возбуждения.

С целью получения разрешенной записи масса одиночного заряда выбирается минимальной, но достаточной (с учетом возможного группирования взрывов) для обеспечения необходимой глубинности исследований. Группирование взрывов следует применять при недостаточной эффективности одиночных зарядов. Правильность выбора массы зарядов периодически контролируется.

Заряд ВВ должен опускаться на глубину, отличающуюся от заданной не более чем на 1 м.

Подготовка, погружение и взрывание заряда производятся после соответствующих распоряжений оператора. Об отказе или неполном взрыве взрывник обязан немедленно сообщить оператору.

По окончании взрывных работ оставшиеся после взрыва скважины, котлованы и ямы должны быть ликвидированы в соответствии с "Инструкцией по ликвидации последствий взрыва при сейсморазведочных работах"

При работах с линиями детонирующего шнура (ЛДШ) источник целесообразно размещать вдоль профиля. Параметры такого источника - длина и число линий - выбираются исходя из условий обеспечения достаточной интенсивности целевых волн и допустимых искажений формы их записей (длина источника не должна превышать половины минимальной кажущейся длины волны полезного сигнала). В ряде задач параметры ЛДШ выбираются с целью обеспечения нужной направленности источника.

Для ослабления звуковой волны рекомендуется линии детонирующего шнура заглублять; зимой - присыпать снегом.

При проведении взрывных работ должны соблюдаться требования, предусмотренные "Едиными правилами безопасности при взрывных работах".

Для возбуждения колебаний в водоемах применяются только невзрывные источники (установки газовой детонации, пневматические источники и др.).

При невзрывном возбуждении используются линейные или площадные группы синхронно работающих источников. Параметры групп - количество источников, база, шаг перемещения, число воздействий (на точке) - зависят от поверхностных условий, волнового поля помех, необходимой глубины исследований и выбираются в процессе опытных работ

При проведении работ с невзрывными источниками необходимо соблюдать идентичность основных параметров режима каждого из работающих в группе источников.

Точность синхронизации должна соответствовать шагу дискретизации при регистрации, но быть не хуже 0,002 с.

Возбуждение колебаний импульсными источниками производится по возможности на плотных утрамбованных грунтах с предварительным выполнением уплотнительного удара.

Глубина "штампа" от ударов плиты при рабочем возбуждении источников не должна превышать 20 см.

При проведении работ с невзрывными источниками должны неукоснительно соблюдаться правила техники безопасности и ведения работ, предусмотренные соответствующими инструкциями по безопасному ведению работ с невзрывными источниками и техническими инструкциями по эксплуатации.

Возбуждение поперечных волн осуществляется с помощью горизонтально либо наклонно направленных ударно-механических, взрывных или вибрационных воздействий

Для реализации селекции волн по поляризации в источнике на каждом пункте производят воздействия, различающиеся направлением на 180 о.

Отметка момента взрыва или удара, а также вертикального времени должна быть четкой и устойчивой, обеспечивающей определение момента с погрешностью не более шага дискретизации.

Если на одном объекте работы проводятся с различными источниками возбуждения (взрывы, вибраторы и пр.), должно быть обеспечено дублирование физических наблюдений с получением в местах смены источников записей от каждого из них.

Возбуждение импульсными источниками

Многочисленный опыт работ с поверхностными импульсными излучателями показывает, что необходимый сейсмический эффект и приемлемые соотношения сигнал/помеха достигаются при накоплении 16-32 воздействий. Это число накоплений эквивалентно взрывам зарядов тротила массой всего 150-300 г. Высокая сейсмическая эффективность излучателей объясняется большим коэффициентом полезного действия слабых источников, что делает перспективным их применение в сейсморазведке, особенно в способе ОГТ, когда на этапе обработки происходит N-кратное суммирование, обеспечивающее дополнительное повышение соотношения сигнал/помеха.

Под действием многократных импульсных нагрузок при оптимальном числе воздействий в одной точке упругие свойства грунта стабилизируются и амплитуды возбуждаемых колебаний остаются практически неизменными. Однако при дальнейшем приложении нагрузок разрушается структура грунта и амплитуды уменьшаются. Чем больше давление на грунт д, тем при большем числе воздействий Nк амплитуда колебаний достигает максимума и тем меньше пологий участок кривой А=?(n). Число воздействий Nк, при котором начинает уменьшаться амплитуда возбуждаемых колебаний, зависит от структуры, вещественного состава и влажности пород и для большинства реальных грунтов не превышает 5-8. При импульсных нагрузках, развиваемых газодинамическими источниками, особенно велика разница амплитуд колебаний, возбуждаемых первым (А1) и вторым (А2) ударами, величина отношения которых А2/А1 может достигать значений 1,4-1,6. Отличия между величинами А2 и А3, А3 и А4 и т.д. значительно меньше. Поэтому при использовании наземных источников первое воздействие в заданной точке не суммируется с остальными и служит лишь для предварительного уплотнения грунта.

Перед производственными работами с использованием невзрывных источников на каждой новой площади проводят цикл работ по выбору оптимальных условий возбуждения и регистрации сейсмических волновых полей.

3.3 Условия приема упругих волн

При импульсном возбуждении всегда стремятся создать в источнике резкий и короткий по времени импульс, достаточный для образования интенсивных волн, отраженных от исследуемых горизонтов. Сильными средствами воздействия на форму и длительность этих импульсов во взрывных и ударных источниках мы не располагаем. Не располагаем мы также высокоэффективными средствами воздействия на отражающие, преломляющие и поглощающие свойства горных пород. Однако сейсморазведка располагает целым арсеналом методических приемов и технических средств, позволяющих в процессе возбуждения и особенно регистрации упругих волн, а также в процессе обработки полученных записей наиболее ярко выделить полезные волны и подавить мешающие их выделению волны-помехи. С этой целью используются различия в направлении прихода волн разного типа к земном поверхности, в направлении смещения частиц среды за фронтами приходящих волн, в частотных спектрах упругих волн, в формах их годографов и т. п.

Упругие волны регистрируются комплектом достаточно сложной аппаратуры, монтируемой в специальных кузовах, устанавливаемых на высоко проходимых транспортных средствах - сейсмических станциях.

Комплект приборов, регистрирующих колебания почвы, вызванные приходом упругих волн в той пли иной точке земной поверхности, называют сейсморегистрирующим (сейсмическим) каналом. В зависимости от числа точек земной поверхности, в которых одновременно регистрируется приход упругих волн, различают 24-, 48-канальные и более сейсмостанции.

Начальным звеном сейсморегистрирующего канала является сейсмоприемник, воспринимающий колебания почвы, обусловленные приходом упругих волн и преобразующий их в электрические напряжения. Так как колебания почвы очень малы, электрические напряжения, возникающие на выходе сейсмоприемника, перед регистрацией усиливаются. С помощью пар проводов напряжения с выхода сейсмоприемников подаются на вход усилителей, смонтированных в сейсмостанции. Для соединения сейсмоприемников с усилителями используется специальный многожильный сейсмический кабель, который обычно называют сейсмической косой.

Сейсмический усилитель представляет собой электронную схему, усиливающую подаваемые на его вход напряжения в десятки тысяч раз. Он может с помощью специальных схем полуавтоматических либо автоматических регуляторов усиления или амплитуд (ПРУ, ПРА, АРУ, АРА) усиливать сигналы. Усилители включают специальные схемы (фильтры), позволяющие необходимые частотные составляющие сигналов усиливать максимально, а другие - минимально, т. е. осуществлять их частотную фильтрацию.

Напряжения с выхода усилителя поступают на регистратор. Используется несколько способов регистрации сейсмических волн. Ранее наиболее широко использовался оптический способ регистрации волн на фотобумаге. В настоящее время упругие волны регистрируются на магнитной пленке. В том и другом способе перед началом регистрации фотобумага либо магнитная пленка приводятся в движение с помощью лентопротяжных механизмов. При оптическом способе регистрации напряжение с выхода усилителя подается на зеркальный гальванометр, а при магнитном способе - на магнитную головку. Когда на фотобумаге или на магнитной пленке производится непрерывная запись, волнового процесса способ записи называют аналоговым. В настоящее время наибольшее применение получает дискретный (прерывистый) способ записи, который обычно называют цифровым. В этом способе в двоичном цифровом коде регистрируются мгновенные значения амплитуд напряжений на выходе усилителя, через равные интервалы времени?t изменяющиеся от 0,001 до 0,004с. Такая операция носит название квантования по времени, а принятую при этом величину?t называют шагом квантования. Дискретная цифровая регистрация в двоичном коде дает возможность использовать для обработки сейсмических материалов универсальные ЭВМ. Аналоговые записи могут быть обработаны на ЭВМ после их преобразования в дискретную цифровую форму.

Запись колебаний почвы в одной точке земной поверхности обычно называют сейсмической трассой или дорожкой. Совокупность сейсмических трасс, полученных в ряде смежных точек земной поверхности (либо скважины) на фотобумаге, в наглядной аналоговой форме составляет сейсмограмму, а на магнитной пленке - магнитограмму. В процессе записи на сейсмограммах и магнитограммах наносятся марки времени через 0,01с, и отмечается момент возбуждения упругих волн.

Любая сейсморегистрирующая аппаратура вносит некоторые искажения в записываемый колебательный процесс. Для выделения и отождествления однотипных волн на соседних трассах необходимо, чтобы вносимые в них искажения на всех трассах были одинаковыми. Для этого все элементы регистрирующих каналов должны быть идентичны друг другу, а вносимые ими искажения в колебательный процесс - минимальными.

Магнитные сейсмические станции снабжаются аппаратурой, позволяющей воспроизвести запись в форме, пригодной для ее визуального рассмотрения. Это необходимо для визуального контроля за качеством записи. Воспроизведение магнитограмм производится на фото, обычную либо электростатическую бумагу с помощью осциллографа, перописца либо матричного регистратора.

Кроме описанных узлов сейсмостанции снабжаются источниками питания, проводной или радиосвязью с пунктами возбуждения, различными контрольными панелями. В цифровых станциях имеются преобразователи аналог-код и код-аналог для преобразования аналоговой записи в цифровую и наоборот и управляющие их работой схемы (логика). Для работы с вибраторами станция имеет коррелятор. Кузова цифровых станций делаются пыленепроницаемыми и снабжаются оборудованием для кондиционирования воздуха, что особенно важно для качественной работы магнитных станций.

3.4 Выбор аппаратурных средств и спецоборудования

Анализ алгоритмов обработки данных метода ОГТ определяет основные требования к аппаратуре. Обработка, предусматривающая выборку каналов (формирование сейсмограмм ОГТ), АРУ, введение статических и кинематических поправок, может выполняться на специализированных аналоговых машинах. При обработке, включающей операции определения оптимальных статических и кинематических поправок, нормирование записи (линейное АРУ), различные модификации фильтрации с вычислением параметров фильтров по исходной записи, построение скоростной модели среды и преобразование временного разреза в глубинный, аппаратура должна обладать широкими возможностями, обеспечивающими систематическую перенастройку алгоритмов. Сложность перечисленных алгоритмов и, что особенно важно, их непрерывное видоизменение в зависимости от сейсмогеологической характеристики исследуемого объекта обусловили выбор универсальных электронно-вычислительных машин в качестве наиболее эффективного инструмента для обработки данных метода ОГТ.

Обработка данных метода ОГТ на ЭВМ позволяет оперативно реализовать полный комплекс алгоритмов, оптимизирующих процесс выделения полезных волн и их преобразование в разрез. Широкие возможности ЭВМ в значительной степени определили применение цифровой регистрации сейсмических данных непосредственно в процессе проведения полевых работ.

Вместе с тем в настоящее время значительная часть сейсмической информации регистрируется аналоговыми сейсмическими станциями. Сложность сейсмогеологических условий и связанный с ними характер записи, а также тип аппаратуры, используемый для регистрации данных в поле, определяют процесс обработки и тип обрабатывающей аппаратуры. В случае аналоговой регистрации обработка может выполняться на аналоговых и цифровых машинах, при цифровой регистрации - на цифровых машинах.

Система для цифровой обработки включает универсальную ЭВМ и ряд специализированных внешних устройств. Последние предназначены для ввода - вывода сейсмической информации, выполнения отдельных непрерывно повторяющихся вычислительных операций (свертка, интеграл Фурье) со скоростью, существенно превышающей скорость основного вычислителя, специализированных графопостроителей и просмотровых устройств. В ряде случаев весь процесс обработки реализуется двумя системами, использующими в качестве основных вычислителей ЭВМ среднего класса (препроцессор) и ЭВМ высокого класса (основной процессор). Система, базирующаяся на ЭВМ среднего класса, применяется для ввода полевой информации, преобразования форматов, записи и ее размещения в стандартной форме на накопителе магнитной ленты (НМЛ) ЭВМ, воспроизведения всей информации с целью контроля полевой записи и качества ввода и ряда стандартных алгоритмических операций, обязательных для обработки в любых сейсмогеологических условиях. В результате обработки данных на выходе препроцессора в двоичном коде в формате основного процессора могут быть записаны исходные сейсмические колебания в последовательности каналов сейсмограммы ОПВ и сейсмограммы ОГТ, сейсмические колебания, исправленные за величину априорных статических и кинематических поправок. Воспроизведение трансформированной записи помимо анализа результатов ввода позволяют выбрать алгоритмы последующей обработки, реализуемой на основном процессоре, а также определить некоторые параметры обработки (полосу пропускания фильтров, режим АРУ и т. д.). Основной процессор, при наличии препроцессора, предназначен для выполнения главных алгоритмических операций (определение скорректированных статических и кинематических поправок, вычисление эффективных и пластовых скоростей, фильтрация в различных модификациях, преобразование временного разреза в глубинный). Поэтому в качестве основного процессора используются ЭВМ с большим быстродействием (10 6 операций в 1 с), оперативной (32-64 тыс. слов) и промежуточной (диски емкостью 10 7 - 10 8 слов) памятью. Использование препроцессора позволяет повысить рентабельность обработки за счет выполнения ряда стандартных операций на ЭВМ, стоимость эксплуатации которой существенно ниже.

При обработке на ЭВМ аналоговой сейсмической информации обрабатывающая система оснащается специализированной аппаратурой ввода, главным элементом которой является блок преобразования непрерывной записи в двоичный код. Дальнейшая обработка полученной таким образом цифровой записи полностью эквивалентна обработке данных цифровой регистрации в поле. Использование для регистрации цифровых станций, формат записи которых совпадает с форматом НМЛ ЭВМ, исключает необходимость в специализированном вводном устройстве. Фактически процесс ввода данных сводится к установке полевой магнитофонной ленты на НМЛ ЭВМ. В противном случае ЭВМ оснащается буферным магнитофоном с форматом, эквивалентным формату цифровой сейсмостанции.

Специализированные устройства цифрового обрабатывающего комплекса.

Прежде чем переходить к непосредственному описанию внешних устройств, рассмотрим вопросы размещения сейсмической информации на лепте ЭВМ (магнитофона цифровой станции). В процессе преобразования непрерывного сигнала амплитудам отсчетных значений, взятых через постоянный интервал дt, приписывается двоичный код, определяющий ее численную величину и знак. Очевидно, что число отсчетных значений c на данной t трассе с длительностью полезной записи t равно с = t/дt+1, а общее число с" отсчетных значений на m-канальной сейсмограмме с" = сm. В частности, при t = 5 с, дt = 0,002 с и m = 2, с = 2501, а с" = 60024 чисел, записанных в двоичном коде.

В практике цифровой обработки каждое числовое значение, являющееся эквивалентом данной амплитуды, принято именовать сейсмическим словом. Число двоичных разрядов сейсмического слова, называемое его длиной, определяется числом разрядов преобразователя аналог - код цифровой сейсмостанции (устройства ввода при кодировании аналоговой магнитной записи). Фиксированное число двоичных разрядов, которым оперирует цифровая машина, выполняя арифметические действия, принято именовать машинным словом. Длина машинного слова определяется конструкцией ЭВМ и может совпадать с длиной сейсмического слова либо превышать его. В последнем случае при вводе в ЭВМ сейсмической информации в каждую ячейку памяти, емкостью в одно машинное слово, заносится несколько сейсмических слов. Такая операция именуется упаковкой. Порядок размещения информации (сейсмических слов) на магнитной ленте накопителя ЭВМ либо магнитной ленте цифровой станции определяется их конструкцией и требованиями алгоритмов обработки.

Непосредственно процессу записи цифровой информации на ленту магнитофона ЭВМ предшествует этап ее разметки на зоны. Под зоной понимается определенный участок ленты, рассчитанный на последующую запись k слов, где k = 2, а степень n = О, 1, 2, 3. . ., причем 2 не должно превышать емкость оперативной памяти. При разметке на дорожках магнитной ленты записывается код, обозначающий номер зоны, а последовательность тактовых импульсов отделяет каждое слово.

В процессе записи полезной информации каждое сейсмическое слово (двоичный код отсчетного значения) регистрируется на отделяемый серией тактовых импульсов участок магнитной ленты в пределах данной зоны. В зависимости от конструкции магнитофонов применяется запись параллельным кодом, параллельно-последовательным и последовательным кодом. При параллельном коде число, являющееся эквивалентом данной отсчетной амплитуды, записывается в строке, поперек магнитной ленты. Для этого используется многодорожечный блок магнитных головок, число которых равно числу разрядов в слове. Запись параллельно-последовательным кодом предусматривает размещение всей информации о данном слове в пределах нескольких строк, располагаемых последовательно одна за другой. Наконец, при последовательном коде информация о данном слове записывается одной магнитной головкой вдоль магнитной ленты.

Количество машинных слов K 0 в пределах зоны магнитофона ЭВМ, предназначенной для размещения сейсмической информации, определяется временем t полезной записи на данной трассе, шагом квантования дt и количеством сейсмических слов r, пакуемых в одно машинное слово.

Таким образом, первый этап обработки на ЭВМ сейсмической информации, зарегистрированной цифровой станцией к мультиплексной форме, предусматривает ее демультиплексирование, т. е. выборку отсчетных значений, соответствующую их последовательному размещению на данной трассе сейсмограммы вдоль оси t и их запись в зону НМЛ, номер которой программно приписан данному каналу. Ввод аналоговой сейсмической информации в ЭВМ в зависимости от конструкции специализированного вводного устройства может выполняться как по канально, так и в мультиплексном режиме. В последнем случае машина по заданной программе выполняет демультиплексирование и запись информации в последовательности отсчетных значений на данной трассе в соответствующую зону НМЛ.

Устройство ввода аналоговой информации в ЭВМ.

Главным элементом устройства ввода аналоговой сейсмической записи в ЭВМ является аналого-цифровой преобразователь (АЦП), выполняющий операции преобразования непрерывного сигнала в цифровой код. В настоящее время известно несколько систем АЦП. Для кодирования сейсмических сигналов в большинстве случаев используются преобразователи поразрядного взвешивания с обратной связью. Принцип действия такого преобразователя основан на сравнении входного напряжения (отсчетной амплитуды) с компенсирующим. Компенсирующее напряжение Uk изменяется поразрядно в соответствии с тем, превышает ли сумма напряжений входную величину U x . Одним из основных узлов АЦП являются цифро-аналоговый преобразователь (ЦАП), управляемый но определенной программе нуль-органом, сравнивающим преобразуемое напряжение с выходным напряжением ЦАП. При первом тактовом импульсе на выходе ЦАП возникает напряжение U K , равное 1/2Uэ. Если оно превышает суммарное напряжение U x , тогда в положении "нуль" окажется триггер старшего разряда. В противном случае (U x >U Kl) триггер старшего разряда окажется в положении единица. Пусть в первом такте выполнялось неравенство U x < 1/2Uэ и в первом разряде выходного регистра записан нуль. Тогда во втором такте U x сравнивается с эталонным напряжением 1/4Uэ, соответствующим единице следующего разряда. Если U x >Uэ, то во втором разряде выходного регистра запишется единица, а в третьем такте сравнения U x будет сопоставляться с эталонным напряжением 1/4Uэ + 1/8Uэ, соответствующим единице в следующем разряде. В каждом очередном i-том такте сравнения, если в предыдущем была записана единица, напряжение Uki-1 увеличивается на величину Uэ /2 до тех пор, пока U x не окажется меньше Uki. В этом случае выходное напряжение U x сравнивается с Uki+1 = Uэ/2 Uэ/2 и т. д. В результате сравнения U x с поразрядно изменяемым U K в положении "нуль" окажутся триггеры тех разрядов, включение которых вызвало перекомпенсацию, а в положении "единица"-триггеры разрядов, обеспечивших наилучшее приближение к измеряемому напряжению. При этом в выходном регистре запишется число, эквивалентное входному напряжению,

Ux = ?aiUэ/2

С выходного регистра через блок сопряжения вводного устройства по команде ЭВМ цифровой код пересылается в ЭВМ для дальнейшей программной обработки. Зная принцип работы аналого-цифрового преобразователя, нетрудно понять назначение и принцип работы основных блоков устройства ввода аналоговой информации в ЭВМ.

Подобные документы

    Методика и технология проведения полевых сейсморазведочных работ. Сейсмогеологическая модель разреза и ее параметры. Расчет функции запаздывания волн-помех. Условия возбуждения и приема упругих волн. Выбор аппаратурных средств и спецоборудования.

    курсовая работа , добавлен 24.02.2015

    Сейсмология и теория метода общей глубинной точки - МОГТ. Расчет оптимальной системы наблюдений. Технология полевых сейсморазведочных работ: требования к сети наблюдений в сейсморазведке, условия возбуждения и приема упругих волн, спецоборудование.

    курсовая работа , добавлен 04.02.2008

    Географо-экономическая характеристика района. Сейсмогеологическая характеристика разреза. Краткая характеристика предприятия. Организация проведения сейсморазведочных работ. Расчет системы наблюдения продольной сейсморазведки. Технология полевых работ.

    дипломная работа , добавлен 09.06.2014

    Техника и методика проведения сейсморазведочных работ на примере территории Кондинского района Тюменской области. Метод общей глубинной точки. Геолого-геофизическая характеристика района работ. Полевые наблюдения, обработка сейсмических материалов.

    курсовая работа , добавлен 24.11.2013

    Геолого-геофизическая характеристика участка проектируемых работ. Сейсмогеологическая характеристика разреза. Обоснование постановки геофизических работ. Технологии полевых работ. Методика обработки и интерпретации. Топографо-геодезические работы.

    курсовая работа , добавлен 10.01.2016

    Проектирование поисковых сейсморазведочных работ методом отраженных волн общей глубинной точки 3D масштаба 1:25000 для уточнения геологического строения Февральского лицензионного участка в Сургутском районе. Применение псевдоакустической инверсии.

    дипломная работа , добавлен 05.01.2014

    Физико-геологические основы метода отраженных волн. Способ общей глубинной точки, обработка материалов. Геологические основы сейсморазведки. Наблюдение и регистрация сейсмического волнового поля. Методика многократных перекрытий. Прием упругих волн.

    реферат , добавлен 22.01.2015

    Методика полевых работ. Базовая обработка сейсмических данных. Итеративное уточнение скоростного закона и статических поправок. Поверхностно-согласованная амплитудная коррекция. Подавление волн-помех. Миграция в глубинной области до суммирования.

    дипломная работа , добавлен 27.07.2015

    Полевые сейсморазведочные работы. Геолого-геофизическая изученность строения территории. Стратиграфия и сейсмогеологическая характеристика района. Параметры сейсморазведочных работ МОГТ-3D на Ново-Жедринском участке. Основные характеристики расстановки.

    дипломная работа , добавлен 19.03.2015

    Метод преломленных волн. Общий обзор методов обработки данных. Принципы построения преломляющей границы. Ввод параметров системы наблюдений. Корреляция волн и построение годографов. Сводные годографы головных волн. Определение граничной скорости.


Список сокращений

Введение

1. Общая часть

1.3 Тектоническое строение

1.4 Нефтегазоносность

2.Специальная часть

3.Проектная часть

3.3 Аппаратура и оборудование

3.4 Методика обработки и интерпретации полевых материалов

4.Специальное задание

4.1 AVO-анализ

4.1.1 Теоретические аспекты AVO-анализа

4.1.2 AVO-классификация газовых песков

4.1.3 AVO кроссплоттинг

4.1.4 Упругая инверсия в AVO анализе

4.1.5 AVO анализ в анизотропной среде

4.1.6 Примеры практического применения AVO анализа

Заключение

Список используемых источников

стратиграфический сейсморазведка полевой анизотропный

Список сокращений

ГИС-геофизические исследования скважин

МОВ-метод отраженной волны

МОГТ-метод общей глубиной точки

НГК-нефтегазоносный комплекс

НГО-нефтегазоносная область

НГР-нефтегазоносный район

ОГ-отражающий горизонт

ОГТ-общая глубинная точка

ПВ-пункт взрыва

ПП-пункт приема

с/п-сейсморазведочная партия

УВ-углеводороды

Введение

Данная бакалаврская работа предусматривает обоснование сейсморазведочных работ МОГТ - 3D на Восточно-Мичаюской площади и рассмотрение AVO-анализа, в качестве специального вопроса.

Проведенными в последние годы сейсморазведочными работами и данными бурения установлено сложное геологическое строение площади работ. Необходимо дальнейшее планомерное изучение Восточно-Мичаюской структуры.

Работой предусматривается изучение площади с целью уточнения геологического строения сейсморазведочных работ МОГТ-3D.

Бакалаврская работа состоит из четырех глав, введения, заключения, изложен на страницах текста, содержит 22 рисунка, 4 таблицы. Библиографический список содержит 10 наименований.

1. Общая часть

1.1 Физико-географический очерк

Восточно-Мичаюская площать (рисунок 1.1) в административном отношении расположена в Вуктыльском районе.

Рисунок 1.1 - Карта местности Восточно-Мичаюской площади

Недалеко от площади исследования находится город Вуктыл и деревня Дутово. Район работ расположен в бассейне реки Печора. Местность представляет собой всхолмленную, пологоволнистую равнину, с ярко выраженными долинами рек и ручьев. Район работ заболочен. Климат района резко континентальный. Лето короткое и прохладное, зима суровая с сильными ветрами. Снеговой покров устанавливается в октябре и сходит в конце мая. По проведению сейсмических работ данный район относится к 4 категории трудности.

1.2 Литолого-стратиграфическая характеристика

Литолого-стратиграфическая характеристика разреза (рисунок 1.2) осадочного чехла и фундамента приводится по результатам бурения и сейсмокаротажа скважин 2- , 4-, 8-, 14-, 22-, 24-, 28-Мичаю, 1 - С.Савинобор, 1 - Динью-Савинобор.

Рисунок 1.2 - Литолого-стратиграфический разрез Восточно-Мичаюской площади

Палеозойская эратема - PZ

Девонская система - D

Среднедевонский отдел - D 2

На карбонатных породах силурийской толщи несогласно залегают терригенные образования среднего девона, живетского яруса.

Отложения живетского яруса мощностью в скв. 1-Динью-Савинобор 233 м представлены глинами и песчаниками в объеме старооскольского надгоризонта (I - в пласт).

Верхнедевонский отдел - D 3

Верхний девон выделен в объеме франского и фаменского ярусов. Фран представлен тремя подъярусами.

Отложения нижнего франа образованы яранским, джьерским и тиманским горизонтами.

Франский ярус - D 3 f

Верхтефранский подъярус - D 3 f 1

Яранский горизонт - D 3 jr

Разрез яранского горизонта (мощностью 88 м в КВ. 28-Мич.) слагают песчаные пласты (снизу вверх) В-1, В-2, В-3 и межпластовые глины. Все пласты не выдержаны по составу, мощности и количеству песчаных прослоев.

Джьерский горизонт - D 3 dzr

В основании джьерского горизонта залегают глинистые породы, выше по разрезу выделяются песчаные пласты Iб и Iа, разделённые пачкой глин. Мощность джьера изменяется от 15 м (КВ. 60 - Ю.М.) до 31 м (КВ. 28- М.).

Тиманский горизонт - D 3 tm

Отложения тиманского горизонта, толщиной 24 м сложены глинисто-алевролитовыми породами.

Среднефранский подъярус - D 3 f 2

Среднефранский подъярус представлен в объёме саргаевского и доманикового горизонтов, сложенных плотными, окремнёнными, битуминозными известняками с прослоями чёрных сланцев. Мощность саргая составляет 13 м (скв. 22-М) - 25 м (скв. 1-Тр.), доманика - 6 м в скв. 28-М. и 38 м в скв. 4-М.

Верхнефранский подъярус - D 3 f 3

Нерасчленённые ветласянские и сирачойские (23 м), евлановские и ливенские (30 м) отложения слагают разрез верхнефранского подъяруса. Они образованы коричневыми и чёрными известняками с прослоями глинистых сланцев.

Фаменский ярус - D 3 fm

Фаменский ярус представлен волгоградским, задонским, елецким и усть-печорским горизонтами.

Волгоградский горизонт - D 3 vlg

Задонский горизонт - D 3 zd

Волгоградский и задонский горизонты сложены глинисто-карбонатными породами мощностью 22 м.

Елецкий горизонт - D 3 el

Отложения елецкого горизонта образованы известняками участками органогенно-обломочными, в нижней части сильно глинистыми доломитами, в основании горизонта залегают мергели и глины известковистые, плотные. Толщина отложений изменяется от 740 м (скв.14-, 22-М) до 918 м (скв.1-Тр.).

Усть-печорский горизонт - D 3 up

Усть-печорский горизонт представлен плотными доломитами, чёрными аргиллитоподобными глинами и известняками. Его толщина составляет 190м.

Каменноугольная система - C

Выше несогласно залегают отложения каменноугольной системы в объёме нижнего и среднего отделов.

Нижнекаменноугольный отдел - C 1

Визейский ярус - C 1 v

Серпуховский ярус - C 1 s

Нижний отдел слагают визейский и серпуховский ярусы, образованные известняками с прослоями глин, общей мощностью 76 м.

Верхнекаменноугольный отдел - C 2

Башкирский ярус - C 2 b

Московский ярус - C 2 m

Башкирский и московский ярусы представлены глинисто-карбонатными породами. Мощность башкирских отложений составляет 8 м (скв. 22-М.) - 14 м (скв. 8-М.), а в скв. 4-, 14-М. они отсутствуют.

Толщина московского яруса изменяется от 24 м (скв. 1-Тр) до 82 м (скв. 14-М.).

Пермская система - Р

Московские отложения несогласно перекрыты пермскими, в объёме нижнего и верхнего отделов.

Нижнепермский отдел - Р 1

Нижний отдел представлен в полном объёме и сложен известняками, и глинистыми мергелями, а в верхней части глинами. Его мощность равна 112м.

Верхнепермский отдел - Р 2

Верхний отдел образуют уфимский, казанский и татарский ярусы.

Уфимский ярус - P 2 u

Уфимские отложения мощностью 275 м представлены переслаиванием глин и песчаников, известняками и мергелями.

Казанский ярус - P 2 kz

Казанский ярус сложен плотными и вязкими глинами, и кварцевыми песчаниками, также встречаются редкие прослои известняков и мергелей. Толщина яруса составляет 325 м.

Татарский ярус - P 2 t

Татарский ярус образуют терригенные породы мощностью 40 м.

Мезозойская эратема - MZ

Триасовая система - T

Отложения триаса в объёме нижнего отдела сложены чередованием глин и песчаников мощностью 118 м (скв.107) - 175 м (скв.28-М.).

Юрская система - J

Юрская система представлена терригенными образованиями мощностью 55 м.

Кайнозойская эратема - KZ

Четвертичкая система - Q

Завершают разрез суглинки, супеси и пески четвертичного возраста толщиной 65 м в скв.22-М. и 100 м в скв.4-М.

1.3 Тектоническое строение

В тектоническом отношении (рисунок 1.3) площадь работ расположена в центральной части Мичаю-Пашнинского вала, которой соответствует Илыч-Чикшинской системе разломов по фундаменту. Система разломов нашла свое отражение и в осадочном чехле. Тектонические нарушения в районе работ являются одним из основных структурно-образующих факторов.

Рисунок 1.3 - Выкопировка из тектонической карты Тимано - Печорской провинции

На площади работ выделены три зоны тектонических нарушений: западная и восточная субмеридионального простирания, и, на юго-востоке площади северо-восточного простирания.

Тектонические нарушения наблюдаемые на западе данной площади можно проследить по всем отражающим горизонтам, а нарушения на востоке и юго-востоке затухают соответственно в фаменское и франское время.

Тектонические нарушения западной части представляют собой грабенообразный прогиб. Наиболее отчетливо прогибание горизонтов прослеживается на профилях 40990-02, 40992-02, -03, -04, -05.

Амплитуда вертикального смещения по горизонтам колеблется от 12 до 85 м. В плане нарушения имеют северо-западную ориентировку. Они протягиваются в юго-восточном направлении от отчетной площади, ограничивая с запада Динью-Савиноборскую структуру.

Нарушения, вероятно, отделяют осевую часть Мичаю-Пашнинского вала от его восточного склона, характеризующегося непрерывным погружением отложений в восточном направлении.

В геофизических полях g нарушениям соответствуют интенсивные зоны градиентов, интерпретация которых позволила выделить здесь разлом глубокого заложения, отделяющий по фундаменту Мичаю-Пашнинскую зону поднятий от относительно опущенной Лемьюской ступени и являющийся, вероятно, основным структуроформирующим разломом (Кривцов К.А., 1967 г., Репин Э.М., 1986 г.).

Западная зона тектонических разломов осложнена оперяющими нарушениями северо-восточного простирания, благодаря которым образуются отдельные приподнятые блоки, как на профилях 40992-03, -10,-21.

Амплитуда вертикального смещения по горизонтам восточной зоны нарушений составляет 9-45 м (пр. 40990-05 пк 120-130).

Юго-восточная зона нарушений представлена ввиде грабенообразного прогиба, амплитуда которого равна 17-55 м (пр. 40992-12 пк 50-60).

Западная тектоническая зона образует приподнятую приразломную структурную зону, состоящую из нескольких тектонически-ограниченных складок - Среднемичаюская, Восточно-Мичаюская, Иван-Шорская, Динью-Савиноборская структуры.

Самый глубокий горизонт ОГ III 2-3 (D 2-3), по которому выполнены структурные построения, приурочен к границе раздела верхнедевонских и среднедевонских отложений.

Исходя из структурных построений, анализа временных разрезов и данных бурения, осадочный чехол имеет довольно сложное геологическое строение. На фоне субмоноклинального погружения слоев в восточном направлении выделена Восточно-Мичаюская структура. Она впервые выявлена, как незамкнутое осложнение типа "структурный нос" материалами с\п 8213 (Шмелевская И.И., 1983 г.). По работам сезона 1989-90 гг. (с\п 40990) структура представлена в виде приразломной складки, оконтуренной по редкой сети профилей.

Отчетными данными установлено сложное строение Восточно-Мичаюской структуры. По ОГ III 2-3 она представлена трехкупольной, линейно-вытянутой, антиклинальной складкой северо-западного простирания, размеры которой составляют 9,75 Ч 1,5 км. Северный купол имеет амплитуду 55 м, центральный - 95 м, южный - 65 м. С запада Восточно-Мичаюскую структуру ограничивает грабенообразный прогиб северо-западного простирания, с юга - тектоническое нарушение, амплитудой 40 м. На севере Восточно-Мичаюская антиклинальная складка осложнена приподнятым блоком (пр. 40992-03), а на юге - опущенным блоком (пр. 40990-07, 40992-11), благодаря оперяющим нарушениям северо-восточного простирания.

К северу от Восточно-Мичаюского поднятия выявлена Среднемичаюская приразломная структура. Мы предполагаем, что она замыкается севернее отчетной площади, где ранее проводились работы с\п 40991 и выполнены структурные построения по отражающим горизонтам в пермских отложениях. Среднемичаюская структура рассматривалась в пределах Восточно-Мичаюского поднятия. По работам с\п 40992 выявлено наличие прогиба между Восточно-Мичаюской и Среднемичаюской структурами на пр. 40990-03, 40992-02, что подтверждается и отчетными работами.

В одной структурной зоне с рассмотренными выше поднятиями расположена Иван-Шорская антиклинальная структура, выявленная работами с\п 40992 (Мисюкевич Н.В., 1993 г.). С запада и юга ее обрамляют тектонические нарушения. Размеры структуры по ОГ III 2-3 составляют 1,75Ч1км.

Западнее Среднемичаюской, Восточно-Мичаюской и Иван-Шорской структур находятся Южно-Лемьюская и Южно-Мичаюская структуры, которые затронуты лишь западными концами отчетных профилей.

Юго-восточнее Южно-Мичаюской структуры выявлена молоамплитудная Восточно-Трипанъельская структура. Она представлена антиклинальной складкой, размеры которой по ОГ III 2-3 составляют 1,5Ч1км.

В западной прибортовой части грабена субмеридионального простирания на севере отчетной площади обособляются небольшие приразломные структуры. Южнее подобные структурные формы образуются благодаря мелким тектоническим нарушениям различного простирания, осложняющим зону грабена. Все эти небольшие структуры в опущенных относительно Восточно-Мичаюского поднятия блоках объединены нами под общим названием Центрально-Мичаюская структура и требуют дальнейшего изучения сейсморазведкой.

С ОГ IIIf 1 связывается репер 6 в верхах яранского горизонта. Структурный план отражающего горизонта IIIf 1, унаследован от ОГ III 2-3 . Размеры Восточно-Мичаюской приразломной структуры составляют 9,1Ч1,2км, в контуре изогипсы - 2260 м выделяются северный и южный купола с амплитудой соответственно 35 и 60 м.

Размеры Иван-Шорской приразломной складки составляют 1,7Ч0,9км.

Структурная карта ОГ IIId отражает поведение подошвы доманикового горизонта среднефранского подъяруса. В целом наблюдается воздымание структурного плана к северу. Севернее отчетной площади подошва доманика вскрыта скв. 2-Сев.Мичаю, 1-Сев.Мичаю на абсолютных отметках - 2140 и - 2109 м соответственно, южнее - в скв. 1-Динью-Савинобор на отметке - 2257 м. Восточно-Мичаюская и Иван-Шорская структуры занимают промежуточное гипсометрическое положение между Северо-Мичаюской и Динью-Савиноборской структурами.

На уровне доманикового горизонта затухает оперяющее нарушение на пр. 40992-03, на месте приподнятого блока образовался купол, охватывающий и соседние профили 40990-03, -04, 40992-02. Его размеры составляют 1,9 Ч 0,4 км, амплитуда - 15 м. Южнее основной структуры к другому оперяющему нарушению на пр. 40992-10 замыкается изогипсой -2180 м небольшой купол. Его размеры равны 0,5 Ч 0,9, амплитуда - 35 м. Иван-Шорская структура находится на 60 м ниже Восточно-Мичаюской.

Структурный план ОГ Ik приуроченного к кровле карбонатов кунгурского яруса значительно отличается от структурного плана нижележащих горизонтов.

Грабенообразный прогиб западной зоны нарушений на временных разрезах имеет чашеобразную форму, в связи с этим произошла перестройка структурного плана ОГ Ik. Происходит смещение экранирующих тектонических нарушений и свода Восточно-Мичаюской структуры на восток. Размеры Восточно-Мичаюской структуры значительно меньше, чем по нижележащим отложениям.

Тектоническое нарушение северо-восточного простирания разбивает Восточно-Мичаюскую структуру на две части. В контуре структуры обосабливаются два купола, причем амплитуда южного больше, чем северного и составляет 35 м. Размеры Восточно-Мичаюского поднятия по ОГ Ik (P 1 k) составляют 5,2 Ч 0,9 км.

Южнее располагается Иван-Шорское приразломное поднятие, представляющее собой теперь структурный нос, на севере которого выделяется небольшой куполок. Затухает нарушение, экранирующее по нижним горизонтам Иван-Шорскую антиклинальную складку на юге.

Восточное крыло Южно-Лемьюской структуры осложняет небольшое тектоническое нарушение субмеридионального простирания.

По всей площади наблюдаются небольшие бескорневые тектонические нарушения, амплитудой 10-15 м, которые не укладываются в какую-либо систему.

Продуктивный на Северо-Савиноборском, Динью-Савиноборском, Мичаюском месторождениях песчаный пласт В-3 находится ниже репера 6, с которым отождествляется ОГ IIIf1 , на 18-22 м, а в скв. 4-Мич. на 30 м.

На структурном плане кровли пласта В-3 наиболее высокое гипсометрическое положение занимает Мичаюское месторождение, северо-восточная часть которого приурочена к Южно-Лемьюской структуре. ВНК Мичаюского месторождения проходит на уровне - 2160 м (Колосов В.И., 1990 г.). Восточно-Мичаюская структура замыкается изогипсой - 2280 м, приподнятый блок на уровне - 2270 м, опущенный блок на южном окончании на уровне - 2300 м.

На уровне Восточно-Мичаюской структуры, южнее находится Северо-Савиноборское месторождение с ВНК на уровне - 2270 м. Динью-Савиноборское месторождение находится еще на 100 м ниже, ВНК в скв. 1-Динью-Савинобор определен на уровне - 2373 м.

Таким образом, Восточно-Мичаюская структура, находящаяся в одной структурной зоне с Динью-Савиноборской, находится значительно выше ее и вполне может быть хорошей ловушкой для углеводородов. Экраном служит грабенообразный прогиб северо-западного простирания асимметричной формы.

Западный борт грабена проходит по малоамплитудным нарушениям сбросового характера, за исключением отдельных профилей (пр. 40992-01, -05, 40990-02). Нарушения восточного борта грабена, наиболее опущенная часть, которого находится на пр. 40990-02, 40992-03, высокоамплитудные. По ним предполагаемые проницаемые пласты контактируют с саргаевскими либо с тиманскими образованиями.

К югу амплитуда нарушения уменьшается и на уровне профиля 40992-08 грабен с юга замыкается. Таким образом, южная периклиналь Восточно-Мичаюской структуры оказывается в опущенном блоке. В данном случае пласт В-3 может контактировать по нарушению с межпластовыми глинами яранского горизонта.

Южнее в этой зоне находится Иван-Шорская приразломная структура, которая пересечена двумя меридиональными профилями 13291-09, 40992-21. Отсутствие сейсмопрофилей вкрест простирания структуры не позволяет судить о надежности выявленного работами с\п 40992 объекта.

Грабенообразный прогиб, в свою очередь, разбит тектоническими нарушениями, благодаря которым образуются изолированные приподнятые блоки в его пределах. Они названы нами как Центрально-Мичаюская структура. На профилях 40992-04,-05 в опущенном блоке нашли отражение фрагменты Восточно-Мичаюской структуры. Есть небольшая малоамплитудная структура на пересечении профилей 40992-20 и 40992-12, названная нами Восточно-Трипанъельской.

1.4 Нефтегазоносность

Площадь работ расположена в Ижма-Печорской нефтегазоносной области в пределах Мичаю-Пашнинского нефтегазоносного района.

На месторождениях Мичаю-Пашнинского района нефтеносен широкий комплекс терригенно-карбонатных отложений от среднего девона до верхней перми включительно.

Рядом с рассматриваемой площадью находятся Мичаюское и Южно-Мичаюское месторождения.

Глубоким поисково-разведочным бурением, проводившимся в 1961 - 1968 гг. на Мичаюском месторождении, скважинами №1-Ю.Лемью, 6, 7, 11, 14, 16, 18, 19, 21, 23, 24 вскрыта залежь нефти, приуроченная к песчаникам пласта В-3, залегающего в верхней части яранского горизонта франского яруса. Залежь пластовая, сводовая, частично водоплавающая. Высота залежи около 25 м, размеры 14 Ч 3.2 км.

На Мичаюском месторождении промышленная нефтеносность связана с песчаными пластами, залегающими в основании казанского яруса. Впервые нефть из верхнепермских отложений на этом месторождении получена в 1982 г. из скв.582. Опробованием в ней установлена нефтеносность пластов Р 2 -23 и Р 2 -26. Залежи нефти в пласте Р 2 -23 приурочены к песчаникам, предположительно руслового генезиса, протягивающимся в виде нескольких полос субмеридионального простирания через всё Мичаюское месторождение. Нефтеносность установлена в скв. 582, 30, 106. Нефть лёгкая, с высоким содержанием асфальтенов и парафина. Залежи приурочены к ловушке структурно-литологического типа.

Залежи нефти в пластах Р 2 -24, Р 2 -25, Р 2 -26 приурочены к песчаникам, предположительно руслового генезиса, протягивающимся в виде полос через Мичаюское месторождение. Ширина полос изменяется от 200 м до 480 м, максимальная толщина пласта от 8 до 11м.

Проницаемость коллекторов составляет 43 мД и 58 мД, пористость 23% и 13,8%. Начальные запасы кат. А+В+С 1 (геол./извк.) равны 12176/5923 тыс.т, категории С 2 (геол./извк.) 1311/244 тыс.т. Остаточные запасы на 01.01.2000 г. по категориям А+В+С 1 составляют 7048/795 тыс.т, по категории С 2 1311/244 тыс.т, накопленная добыча 5128 тыс.т.

Южно-Мичаюское нефтяное месторождение расположено в 68 км к северо-западу от г. Вуктыл, в 7 км от Мичаюского месторождения. Оно открыто в 1997 г. скважиной 60 - Ю.М., в которой из интервала 602 - 614 м получен приток нефти 5 м 3 /сут по ПУ.

Залежь нефти пластовая, литологически экранированная приуроченная к песчаникам пласта Р 2 -23 казанского яруса верхней перми.

Глубина залегания кровли пласта в своде равна 602 м, проницаемость коллектора 25,4 мД пористость 23%. Плотность нефти составляет 0,843 г/см 3 , вязкость в пластовых условиях 13,9 мПа. с, содержание смол и асфальтенов 12.3%, парафинов 2,97%, серы 0,72%.

Начальные запасы равны остаточным запасам на 01.01.2000г. и составляют по категориям А+В+С 1 742/112тыс.т., по категории С 2 2254/338 тыс.т.

На Динью-Савиноборском месторождении залежь нефти в терригенных отложениях пласта В-3 яранского горизонта франского яруса верхнего девона открыта в 2001г. скважиной 1-Динью-Савинобор. В разрезе скважины было опробовано 4 объекта (таблице 1.2).

При испытании интервала 2510-2529 м (пласт В-3) получен приток (раствор, фильтрат, нефть, газ) в объёме 7,5 м 3 (из них нефти - 2.5 м 3).

При опробовании интервала 2501-2523 м получена нефть дебитом 36 м 3\сут через штуцер диаметром 5 мм.

При испытании вышележащих пластов-коллекторов яранского и джьерского горизонтов (пласты Iа, Iб, В-4) (интервал испытания 2410-2490 м) нефтепроявлений не наблюдалось. Получен раствор в объёме 0,1 м 3.

Для определения продуктивности пласта В-2 проведено испытание в интервале 2522-2549,3 м. В результате получен раствор, фильтрат, нефть, газ и пластовая вода в объёме 3,38 м 3, из них за счёт негерметичности инструмента - 1,41 м 3, приток из пласта - 1,97 м 3.

При исследовании нижнепермских отложений (интервал испытания 1050 - 1083,5 м) также получен раствор в объёме 0,16 м 3. Однако в процессе бурения по данным керна в указанном интервале были отмечены признаки нефтенасыщения. В интервале 1066,3-1073,3 песчаники разнозернистые, линзовидные. В середине интервала наблюдались выпоты нефти, 1,5 см - прослой нефтенасыщенного песчаника. В интервалах 1073,3-1080,3 м и 1080,3-1085 м также отмечены прослои песчаников с выпотами нефти и маломощные (в интервале 1080,3-1085 м, вынос керна 2,7 м) прослои песчаника полимиктового нефтенасыщенного.

Признаки нефтенасыщения по данным керна в скв. 1-Динью-Савинобор отмечены также в кровле пачки зеленецкого горизонта фаменского яруса (интервал отбора керна 1244,6-1253,8 м) и в пласте Iб джьерского горизонта франского яруса (интервал отбора керна 2464,8-2470 м).

В пласте В-2 (D3 jr) песчаники с запахом УВ (интервал отбора керна 2528,7-2536 м).

Сведения о результатах опробования и нефтепроявлениях в скважинах приведены в таблицах 1.1 и 1.2.

Таблица 1.1 - Результаты опробования скважин

пласта.

Результаты опробования.

1 объект. Приток минерализованной воды

Q=38 м 3 /сут по ПУ.

2 объект. Мин. вода Q=0,75 м 3 /сут по ПУ.

3 объект. Притока не получено.

1 объект. Мин. вода Q=19,6 м 3 /сут.

2 объект. Незначительный приток мин. воды

Q=0,5 м 3 /сут.

1 объект. ИП пластовая мин. вода с примесью фильтрата раствора Q=296 м 3 /сут.

2 объект. ИП пластовая мин. вода с запахом серо-водорода, темно-зеленого цвета.

3 объект. Мин. вода Q=21,5 м 3 /сут.

4 объект. Мин. вода Q=13,5 м 3 /сут.

В колонне фонтанный приток нефти 10 м 3 /сут.

Нефть Q=21 т/сут на 4 мм штуцере.

1 объект. Промышленный приток нефти

Q=26 м 3 /сут на 4 мм штуцере.

1 объект. Фонтанный приток нефти

Q=36,8 м 3 /сут на 4 мм штуцере.

Приток нефти 5 м 3 /сут по ПУ.

3, 4, 5 объекты. Слабый приток нефти

Q = 0,1 м 3 /сут.

ИП нефть 25 м 3 за 45 мин.

Начальный дебит нефти равен 81,5 т/сут.

5,6 м 3 нефти за 50 минут.

Начальный дебит нефти 71,2 т/сут.

Нефть Q нач. =66,6 т/сут.

Приток нефти Q=6,5 м 3 /час, Р пл. =205 атм.

Начальный дебит нефти 10,.3 т/сут.

Нефть Q=0,5 м 3 /час, Р пл. =160 атм.

Минеральная вода с пленками нефти.

Раствор, фильтрат, нефть, газ. Объем притока

7,5 м 3 (из них нефти 2,5 м 3). Р пл. =27,65 МПа.

Раствор, фильтрат, нефть, газ, пластовая вода.

V пр. =3,38 м 3 , Р пл. =27,71 МПа.

Нефть дебитом 36 м 3 \сут, диам. шт. 5 мм.

Притока не получено.

Таблица 1.2 - Сведения о нефтепроявлениях

Интервал

Характер проявлений.

Известняки с примазками нефти в кавернах и порах.

Пленки нефти при бурении.

По ГИС нефтенасыщеный песчаник.

Известняк с сутурными швами, заполненными битуминозной глиной.

Нефтенасыщенный керн.

Переслаивание нефтенасыщенных песчаников, алевролитов, тонких прослоев глин.

Нефтенасыщенный керн.

Нефтенасыщенные полимиктовые песчаники.

Водонасыщенные песчаники.

Нефтенасыщенные известняки.

Известняк скрытокристаллический, по редким трещинам включения битуминозного материала.

Аргиллит, известняк. В середине интервала выпоты нефти; 1,5 см - прослой нефтенасыщенного песчаника.

Песчаник разнозернистый и тонкозернистый с выпотами нефти.

Известняк и отдельные прослои нефтенасыщенного песчаника.

Переслаивание доломита и доломитизированного известняка с выпотами нефти.

Аргиллит с выпотами и пленками нефти по трещинам; алевролит с запахом нефти.

Переслаивание песчаников с выпотами и пятнами нефти.

Переслаивание песчаников с запахом УВ и аргиллитов с вкраплениями битума.

Мелкозернистые песчаники с запахом УВ, по трещинам битуминозные.

Известняк с выпотами нефти и запахом УВ; песчаник и аргиллит с выпотами нефти.

Плотный и крепкий песчаник с запахом УВ.

Переслаивание песчаника кварцевого с запахом УВ, алевролита и аргиллита.

Кварцевые песчаники со слабым запахом УВ.

2. Специальная часть

2.1 Геофизические работы, проводимые на данной площади

Отчет составлен по результатам переобработки переинтерпретации сейсморазведочных материалов, полученных на северном блоке Динью-Савиноборского месторождения в разные годы сейсмопартиями 8213 (1982 г.), 8313(1984 г.), 41189 (1990 г.), 40990(1992 г.), 40992 (1993 г.) согласно договору между ООО "Когель" и ООО "Динью". Методика и техника работ проведена в таблице 2.1.

Таблица 2.1 - Сведения о методике полевых работ

" Прогресс"

"Прогресс - 2"

"Прогресс - 2"

Система наблюдений

Центральная

Централь ная

Фланговая

Фланговая

Фланговая

Параметры источника

Взрывной

Взрывной

Невзрывной "падающий груз" - СИМ

Невзрывной "падающий груз" - СИМ

Невзрывной "Енисей - СЭМ"

Кол-во скважин в группе

Величина заряда

Расстояние между ПВ

Параметры расстановки

Кратность

Группирование сейсмоприемников

26 сп на базе 78 м

26 сп на базе 78 м

12 сп на базе 25 м

11 сп на базе 25 м

11 сп на базе 25 м

Расстояние между ПП

Минимальное расстояние взрыв-прибор

Максимальное расстоние взрыв-прибор

Выявленная работами с/п 40991 Восточно-Мичаюская тектонически-ограниченная структура была передана в бурение по нижнефранским, нижнефаменским и нижнепермским отложением в 1993 году с/п 40992. Сейсморазведочные работы были ориентированы в целом на изучение пермской части разреза, структурные построения в нижней части разреза выполнены только по отражающему горизонту III f 1 .

Западнее площади работ находятся Мичаюское и Южно-Мичаюское месторождения нефти. Промышленная нефтегазоносность Мичаюского месторождения связанна с верхнепермскими отложениями, залежь нефти содержится в песчаниках пласта В-3 в верхах яранского горизонта.

Юго-восточнее Восточно-Мичаюской структуры в 2001 году скважиной 1-Динью-Савинобор открыта залежь нефти в нижнефранских отложениях. Динью-Савиноборская и Восточно-Мичаюская структуры находятся в одной структурной зоне.

В связи с этими обстоятельствами возникла необходимость пересмотра всех имеющихся геолого-геофизических материалов.

Переобработка сейсмических данных проводилась в 2001 году Табриной В.А. в системе ProMAX, объем переобработки составил 415.28 км.

Предварительная обработка состояла в переводе данных во внутренний формат ProMAX, присвоении геометрии и восстановлении амплитуд.

Интерпретация сейсмического материала осуществлялась ведущим геофизиком Мингалеевой И.Х., геологом Матюшевой Е.В., геофизиком I категории Обориной Н.С., геофизиком Горбачевой Д.С. Интерпретацию выполняли в разведочной системе Geoframe на рабочей станции SUN 61. Интерпретация включала корреляцию отражающих горизонтов, построение карт изохрон, изогипс, изопахит. В рабочую станцию были загружены оцифрованные каротажные диаграммы по скважинам 14-Мичаю, 24-Мичаю. Для пересчета кривых ГИС в масштаб временного разреза использовали скорости, полученные по сейсмокаротажу соответствующих скважин.

Построение карт изохрон, изогипс, изопахит проводили в автоматическом режиме. При необходимости их корректировали вручную.

Скоростные модели, необходимые для трансформации карт изохрон в структурные были определены по материалам бурения и сейсморазведки.

Сечение изогипс определяли погрешностью построений. С целью сохранения особенностей структурных планов и для лучшей визуализации сечение изогипс приняли 10 м по всем отражающим горизонтам. Масштаб карт 1:25000. Стратиграфическая приуроченность отражающих горизонтов выполнялась по сейсмокаротажу скважин 14-,24- Мичаю.

На площади проследили 6 отражающих горизонтов. Структурные построения представили по 4 отражающим горизонтам.

ОГ Iк приурочен к реперу 1, выделенному по аналогии со скважиной Динью-Савинобор в верхах кунгурского яруса, на 20-30 м ниже уфимских отложений (рисунок 2.1). Горизонт хорошо коррелируется по положительной фазе, интенсивность отражения невелика, но динамические признаки выдержаны по площади. Следующий отражающий горизонт II-III отождествляется с границей каменноугольных и девонских отложений. ОГ достаточно легко узнается на профилях, хотя местами наблюдается интерференция двух фаз. На восточных концах широтных профилей над ОГ II-III появляется дополнительное отражение, которое выклинивается к западу по типу подошвенного налегания.

ОГ IIIfm 1 приурочен к реперу 5, выделяемому в низах елецкого горизонта нижнего фамена. В скважинах 5-М., 14-М репер 5 совпадает с подошвой елецкого горизонта, выделяемой ТП НИЦ, в других скважинах (2,4,8,22,24,28-М) на 3-10 м выше официальной разбивки подошвы D 3 el. Отражающий горизонт является опорным, имеет ярко выраженные динамические признаки и высокую интенсивность. Структурные построения по ОГ IIIfm 1 не предусмотрены программой.

ОГ IIId отождествляется с подошвой доманиковых отложений, уверенно коррелируется на временных разрезах по отрицательной фазе.

С репером 6 в верхах яранского горизонта нижнего франа связывается ОГ IIIf 1 . Репер 6 выделяется достаточно уверенно во всех скважинах на 10-15м ниже подошвы джъерских отложений. Отражающий горизонт IIIf 1 следится хорошо, несмотря на то, что имеет невысокую интенсивность.

Продуктивный на Мичаюском, Динью-Савиноборском месторождениях песчаный пласт-коллектор В-3 находится на18-22 м ниже ОГ IIIf 1 , лишь в скважине 4-М. мощность отложений, заключенных между ОГ IIIf 1 и пластом В-3 увеличена до 30 м.

Рисунок 2.1 - Сопоставление разрезов скважин 1-С. Мичаю, 24-Мичаю, 14-Мичаю и привязка отражающих горизонтов

Слабо выражен в волновом поле следующий отражающий горизонт III 2-3 , прослеженный вблизи кровли терригенных отложений среднего девона. ОГ III 2-3 откоррелирован по отрицательной фазе как поверхность размыва. На юго-западе отчетной площади наблюдается сокращение временной мощности между ОГ IIIf 1 и III 2-3 , что особенно хорошо видно на профиле 8213-02 (рисунок 2.2).

Структурные построения (рисунок 2.3 и 2.4) выполнены по отражающим горизонтам Ik, IIId, IIIf 1 , III 2-3 , построена карта изопахит между ОГ IIId и III 2-3 , представлена структурная карта по кровле песчаного пласта В-3, для всего Динью-Савиноборского месторождения.

Рисунок 2.2 - Фрагмент временного разреза по профилю 8213-02

2.2 Результаты геофизических исследований

В результате переобработки и переинтерпретации сейсморазведочных данных на северном блоке Динью-Савиноборского месторождения.

Изучили геологическое строение северного блока Динью-Савиноборского месторождения по отложениям перми и девона,

Рисунок 2.3 - Структурная карта по отражающему горизонту III2-3 (D2-3 )

Рисунок 2.4 - Структурная карта по отражающему горизонту III d (D 3 dm)

- проследили и увязали по площади 6 отражающих горизонтов: Ik, II-III, IIIfm1 , IIId, IIIf1 , III2-3 ;

Выполнили структурные построения в масштабе 1:25000 по 4 ОГ: Ik, IIId, IIIf1 , III2-3 ;

Построили общую структурная карта по кровле пласта В-3 для Динью-Савиноборской структуры и северного блока Динью-Савиноборского месторождения, и карта изопахит между ОГ IIId и III2-3 ;

Построили глубинные сейсмические разрезы (масштабы гор. 1:12500, вер. 1:10000) и сейсмо-геологические разрезы (масштабы гор. 1:25000, вер. 1:2000);

Построили схему сопоставления нижнефранских отложений по скважинам на Мичаюской площади, скв. 1-Динью-Савинобор и 1-Трипанъель в масштабе 1:500;

Уточнили гелогическое строение Восточно-Мичаюской и Иван-Шорской структур;

Выявили Среднемичаюскую, Центрально-Мичаюскую, Восточно-Трипанъельскую структуры;

Протрассировали грабенообразный прогиб северо-восточного простирания, являющийся экраном для северного блока Динью-Савиноборской структуры.

С целью изучения нефтеперспективности нижнефранских отложений в пределах центрального блока Восточно-Мичаюской структуры пробурить поисковую скважину № 3 на профиле 40992-04 пк 29.00 глубиной 2500 м до вскрытия среднедевонских отложений;

На южном блоке - поисковую скважину № 7 на кресте профилей 40990-07 и 40992 -21 глубиной 2550 м;

На северном блоке - поисковую скважину № 8 профиль 40992-03 пк 28.50 глубиной 2450 м;

Проведение детальных сейсморазведочных работ в пределах Иван-Шорской структуры;

Провести переобработку и переинтерпретацию сейсморазведочных работ на Южно-Мичаюской и Среднемичаюской структурах.

2.3 Обоснование выбора трехмерной сейсморазведки

Главной причиной, обосновывающей необходимость применения достаточно сложной и достаточно дорогой технологии площадной сейсморазведки 3D на разведочном и детализационном этапах, является переход в большинстве регионов к исследованию структур и месторождений с все более сложно построенными резервуарами, что приводит к риску бурения пустых скважин. Доказано, что при более, чем на порядок, увеличении пространственной разрешенности стоимость работ 3D по сравнению с детальной съемкой 2D (~2км/км 2) возрастает всего в 1,5-2 раза. При этом детальность и общий объем информации съемки 3D выше. Практически непрерывное сейсмическое поле обеспечит:

· Более высокую детальность описания структурных поверхностей и точность картирования по сравнению с 2D (ошибки уменьшаются в 2-3 раза и не превышают 3-5 м);

· Однозначность и надежность прослеживания по площади и в объеме тектонических нарушений;

· Сейсмофациальный анализ обеспечит выделение и прослеживание сейсмических фаций в объеме;

· Возможность интерполяции в межскважинное пространство параметров продуктивных пластов (толщины пластов, пористость, границы развития коллектора);

· Уточнение запасов нефти и газа за счет детализации структурных и подсчетных характеристик.

Это свидетельствует о возможной экономической и геологической целесообразности применения трехмерной съемки на Восточно-Мичаюской структуре. При выборе экономической целесообразности необходимо иметь ввиду, что экономический эффект от применения 3D ко всему комплексу разведки и разработки месторождений также учитывает:

· прирост запасов по категории С1 и С2;

· экономию за счет сокращения количества малоинформативных разведочных и низкодебитных эксплутационных скважин;

· оптимизацию режима разработки за счет уточнения модели продуктивного резервуара;

· прирост ресурсов С3 за счет выявления новых объектов;

· стоимость проведения съемки 3D, обработки и интерпретации данных.

3. Проектная часть

3.1 Обоснование методики работ МОГТ - 3D

Выбор системы наблюдений основывается исходя из следующих факторов: решаемые задачи, особенности сейсмогеологических условий, технические возможности, экономическая выгода. Оптимальное сочетание этих факторов и определяет систему наблюдений.

На Восточно-Мичаюской площади сейсморазведочные работы МОГТ-3D будут проводиться с целью детального изучения структурно-тектонических и литолого-фациальных особенностей строения осадочного чехла в отложениях от верхнепермских до силурийских; картирования зон развития литолого-фациальных неоднородностей и улучшенных коллекторских свойств, разрывных тектонических нарушений; изучения геологической истории развития на основе палеоструктурного анализа; выявления и подготовки нефтеперспективных объектов.

Для решения поставленных задач, с учетом геологического строения района, фактора минимального воздействия на природную среду и экономического фактора, предлагается ортогональная система наблюдений с пунктами возбуждения, расположенными между линиями приема (т.е. с перекрытием линий приема). В качестве источников возбуждения будут применяться взрывы в скважинах.

3.2 Пример расчета системы наблюдений типа "крест"

Система наблюдений типа "крест" формируется за счет последовательного перекрытия взаимно ортогональных расстановок, источников и приемников. Проиллюстрируем принцип формирования площадной системы на следующем идеализированном примере. Предположим, что сейсмоприемники (группа сейсмоприемников) равномерно распределены по линии наблюдения, совпадающей с осью X.

Вдоль оси, пересекающей расстановку сейсмоприемников в центре, равномерно и симметрично размещается т у источников. Шаг источников ду и сеймоприемников дх одинаков. Сигналы, возбужденные каждым источником, принимаются всеми сейсмоприемниками расстановки. В результате такой отработки формируется поле из т 2 средних точек отражения. Если последовательно смещать расстановку сейсмоприемников и ортогональную ей линию источников вдоль оси X на шаг дх и повторять регистрацию, то в результате будет достигнуто - кратное перекрытие полосы, ширина которой равна половине базы возбуждения. Последовательное смещение базы возбуждения и приема вдоль оси Y на шаг ду приводит к дополнительному - кратному перекрытию, а общее перекрытие составит. Естественно, что на практике должны применяться более технологичные и экономически обоснованные варианты системы с взаимно ортогональными линиями источников и приемников. Очевидно также, что кратность перекрытий должна, выбираться в соответствии с требованиями, определяемыми характером волнового поля и алгоритмами обработки. В качестве примера на рисунке 3.1 приведена восемнадцатикратная площадная система, для реализации которой используется одна 192 - канальная сейсмическая станция, принимающая последовательно сигналы с 18 пикетов возбуждения. Рассмотрим параметры этой системы. Все 192 сейсмоприемников (групп сейсмоприемников) распределены на четырех параллельных профилях (по 48 на каждом). Шаг дх между точками приема 0,05 км, расстояние ду между линиями приема 0,05 км. Шаг источников Sy по оси Y - 0,05 км. Фиксированное распределение источников и приемников будем называть блоком. После приема колебаний со всех 18 источников блок смещается на шаг?х (в данном частном случае равный- 0,2 км), вновь повторяется прием со всех 18 источников и т.д. Так отрабатывается по оси X полоса от начала и до конца площади исследования. Следующая полоса из четырех линий приема размещается параллельно предыдущей таким образом, чтобы расстояние между соседними (ближайшими) линиями приема первой и второй полосы равнялось расстоянию между линиями приема в блоке (?y = 0.2км). В этом случае линии источников первой и второй- полосы перекрываются на половину базы возбуждения. При отработке третьей полосы на половину перекрываются линии источников второй и третьей полосы и т.д. Следовательно, в данном варианте системы линии приема не дублируются, а в каждой точке источника, (исключая крайние) сигналы возбуждаются дважды.

Запишем основные соотношения, определяющие параметры системы и ее кратность. Для этого, следуя рисунку 8, введем дополнительные обозначения:

W - количество линий приема,

m x - количество точек приема на каждой линии приема данного блока;

m y - количество источников на каждой линии возбужденния данного блока,

Р - ширина интервала в центре линии возбуждения, в пределах которого источники не размещаются,

L - величина выноса(смещения) по оси X линии источников от ближайших точек приема.

Во всех случаях интервалы?х, ?у и L кратны шагу дх. Это обеспечивает равномерность сети средних точек, соответствующих каждой паре источник-приемник, т.е. выполняете! требование условия, необходимого для формирования сейсмограмм общих средних точек (ОСТ). При этом:

Ax=Nдx N=1, 2, 3…

tSy-MдyM=1, 2, 3…

L=q дхq=1, 2, 3…

Поясним смысл параметра Р. Сдвиг между линиями средних точек равен половине шага?у. Если источники распределены равномерно (разрыв отсутствует), то для аналогичных систем кратность перекрытия по оси Y равна W (числу линий приема). Для уменьшения кратности перекрытий вдоль оси Y и для сокращения затрат за счет меньшего количества источников, по центру линии возбуждения делается разрыв на величину Р равную:

Где, k = 1,2,3 ...

При k=1,2, 3, соответственно, кратность перекрытий уменьшается на 1, 2, 3, т.е. становится равной W-K.

Общая формула, связывающая кратность перекрытий п у с параметрами системы

отсюда выражение для числа источников т у на одной линии возбуждения можно записать следующим образом:

Для системы наблюдений (рисунок 3.1) количество источников на линии возбуждения равно 18.

Рисунок 3.1 - Система наблюдений типа "крест"

Из выражения (3.3) следует, что поскольку шаг профилей?у всегда кратен шагу источников ду, количество источников т у для такого типа систем - четное число. Распределяясь на прямой параллельной оси Y симметрично профилям приема, входящим в данный блок точки возбуждения либо совпадают с точками приема, либо смещены относительно точек приема на 1/2·дy. Если кратность перекрытий п у в данном блоке нечетное число, источники всегда не совпадают с точками приема. Если n у - четное число, возможны две ситуации: ?у/ду - нечетное число, источники совпадают с точками приема, ?у/ду - четное число, источники смещены относительно точек приема на ду/2. Данный факт следует учитывать при синтезе системы (выборе количества профилей приема W и шага?у между ними), поскольку от этого зависит, будут ли в точках приема зарегистрированы вертикальные времена, необходимые для определения статических поправок.

Формула, определяющая кратность перекрытий n х вдоль оси X может быть записана аналогично формуле (3.2)

таким образом, общая кратность перекрытий n xy по площади равна произведению n x и n y

В соответствии с принятыми значениями т х, дх и?х кратность перекрытий п х по оси X вычисленная по формуле (3.4), равна 6, а общая кратность n xy = 13 (рисунок 3.2).

Рисунок 3.2 - Кратность перекрытий nх =6

Наряду с системой наблюдений, предусматривающей перекрытие источников без перекрытий линий приема, на практике применяются системы у которых, линии возбуждения не перекрываются, а дублируется часть линий приема. Рассмотрим шесть линий приема, на каждой из которых равномерно распределены сейсмоприемники принимающие сигналы последовательно возбуждаемые источниками. При отработке второй полосы три линии приема дублируются следующим блоком, а линии источников идут в виде продолжения ортогональных профилей первой полосы. Таким образом, применяемая технология работ не предусматривает дублирование точек возбуждения. При двойном перекрытии линий приема кратность п у равна числу перекрывающихся линий приема. Полным эквивалентом системы из шести профилей с последующим перекрытием трех линий приема, является система с перекрытием источников, число которых увеличивается в два раза, для достижения той же кратности. Поэтому системы с перекрытием источников являются экономически нерентабельными, т.к. при этой методике требуется выполнить большой объем буро-взрывных работ.

Переход к 3D сейсморазведке.

Проектирование съемки 3D базируется на знании ряда характеристик сейсмологического разреза участка работ.

К сведениям о геосейсмическом разрезе относятся:

· кратность съемки 2D

· максимальные глубины залегания целевых геологических границ

· минимальные геологические границы

· минимальный горизонтальный размер локальных геологических объектов

· максимальные частоты отраженных волн от целевых горизонтов

· средняя скорость в слое, лежащем на целевом горизонте

· время регистрации отражений от целевого горизонта

· размер площади исследований

Для регистрации временного поля в МОГТ-3D рационально применить телеметрические станции. Количество профилей выбирается в зависимости от кратности n y =щ.

Расстояние между общими средними точками на отражающей поверхности по осям X и Y определяет размер бина:

Максимально допустимый минимальный вынос линии источников выбирается исходя из минимальной глубины отражающих границ:

Минимальный офсет.

Максимальный офсет.

Для обеспечения кратности n x расстояние между линиями возбуждения?x определяется:

Для регистрирующего блока расстояние между линиями приема?y:

С учетом технологии работ с двойным перекрытием линией приема количество источников m y в одном блоке для обеспечения кратности n y:

Рисунок 3.3 - Кратность ny =2

По результатам планирования съемки 3D получают следующий набор данных:

· расстояние между каналами дх

· количество активных каналов на одной линии приема m x

· общее количество активных каналов m x · щ

· минимальный офсет Lmin

· размер бина

· общая кратность n xy

Подобные документы

    Геолого-геофизическая характеристика участка проектируемых работ. Сейсмогеологическая характеристика разреза. Обоснование постановки геофизических работ. Технологии полевых работ. Методика обработки и интерпретации. Топографо-геодезические работы.

    курсовая работа , добавлен 10.01.2016

    Полевые сейсморазведочные работы. Геолого-геофизическая изученность строения территории. Стратиграфия и сейсмогеологическая характеристика района. Параметры сейсморазведочных работ МОГТ-3D на Ново-Жедринском участке. Основные характеристики расстановки.

    дипломная работа , добавлен 19.03.2015

    История изучения центральной части Кудиновско-Романовской зоны. Тектоническое строение и перспективы нефтегазоносности Вербовского участка. Литолого-стратиграфическая характеристика разреза. Обоснование постановки поисковых работ на Вербовской площади.

    курсовая работа , добавлен 01.02.2010

    Геолого-геофизическая изученность района. Тектоническое строение и стратиграфия участка исследований. Методика и техника полевых работ, обработка и интерпретация данных. Стратиграфическая привязка и корреляция отражающих границ. Построение карт.

    курсовая работа , добавлен 10.11.2012

    Географо-экономическая характеристика района. Сейсмогеологическая характеристика разреза. Краткая характеристика предприятия. Организация проведения сейсморазведочных работ. Расчет системы наблюдения продольной сейсморазведки. Технология полевых работ.

    дипломная работа , добавлен 09.06.2014

    Рассмотрение метода общей глубинной точки: особенности годографа и интерференционной системы. Сейсмологическая модель разреза. Расчет годографов полезных волн, определение функции запаздывания волн-помех. Организация полевых сейсморазведочных работ.

    курсовая работа , добавлен 30.05.2012

    Географо-экономические условия района работ. Проектный литолого-стратиграфический разрез. Характеристика тектоники и нефтегазоносности. Методика и объем проектируемых работ. Система расположения поисковых скважин. Обоснование типовой конструкции скважины.

    курсовая работа , добавлен 06.03.2013

    Особенности сейсморазведочных работ МОВ ОГТ 2D кабельными телеметрическими системами ХZone на Восточно-Перевозной площади Баренцева моря. Прогнозная оценка возможности выделения нефтегазонасыщенных объектов с использованием технологии AVO-анализа.

    дипломная работа , добавлен 05.09.2012

    Методика и технология проведения полевых сейсморазведочных работ. Сейсмогеологическая модель разреза и ее параметры. Расчет функции запаздывания волн-помех. Условия возбуждения и приема упругих волн. Выбор аппаратурных средств и спецоборудования.

    курсовая работа , добавлен 24.02.2015

    Геологическое строение района работ. Литолого-стратиграфическая характеристика продуктивного разреза. Тектоника и нефтегазоносность. Геологические задачи, решаемые геофизическими методами. Физико-геологические предпосылки применения геофизических методов.

ОБЩЕЙ ГЛУБИННОЙ ТОЧКИ СПОСОБ, ОГТ (а. соmmon point depth method; н. reflexionsseismisches Verfahren des gemeinsamen Tiefpunkts; ф. point de reflexion соmmun; и. metodo de punto соmun profundo), — основной способ сейсморазведки, основанный на многократной регистрации и последующем накапливании сигналов сейсмических волн , отражённых под разными углами от одного и того же локального участка (точки) сейсмической границы в земной коре . Способ ОГТ впервые предложен американским геофизиком Г. Мейном в 1950 (патент опубликован в 1956) для ослабления многократных отражённых волн-помех, в применяется с конца 60-х гг.

При проведении исследований способом ОГТ пункты приёма и возбуждения сейсмических волн располагаются симметрично относительно каждого данного пункта профиля. При этом для простых моделей геологической среды (например, слоистооднородная среда с горизонтальными границами) можно в рамках представлений геометрической сейсмики считать, что отражение сейсмических волн на каждой границе происходит в одной и той же её точке (общей глубинной точке). При наклонных границах и других осложнениях геологического строения отражения волн происходят в пределах площадки, размеры которой достаточно малы, чтобы при решении широкого круга практических задач считать, что принцип локальности соблюдается. Сейсмические волны возбуждаются взрывами взрывчатых веществ в , детонирующим шнуром или группой невзрывных на поверхности. Для приёма сигналов применяют линейные (с числом элементов 10 и более), а в сложных поверхностных условиях также и площадные группы сейсмоприёмников. Наблюдения проводят, как правило, по продольным профилям (реже криволинейным) с использованием многоканальных (48 каналов и более) цифровых сейсмических станций . Кратность перекрытия составляет в основном 12-24, в сложных геологических условиях и при детальных работах 48 и более. Расстояние между пунктами приёма сигнала (шаг наблюдений) 40-80 м, при детальном изучении локальных сложнопостроенных неоднородностей до 20-25 м, при региональных исследованиях до 100-150 м. Расстояние между пунктами возбуждения обычно выбирают кратным расстоянию между пунктами приёма. Используются относительно большие базы наблюдения, величина которых соизмерима или примерно равна 0,5 глубины залегания искомого объекта и не превышает в основном 3-4 км. При изучении сложно-построенных сред, особенно при работах на акваториях , применяют различные варианты систем трёхмерной сейсморазведки методом ОГТ, при которых пункты ОГТ относительно равномерно и с высокой плотностью (25х25 м - 50х50 м) располагаются на исследуемой площади или её отдельных линейных участках. Регистрацию волн ведут в основном в диапазонах частот 8-15 — 100- 125 Гц. Обработку проводят на высокопроизводительных геофизических вычислительных комплексах, позволяющих осуществлять предварительное (до суммирования по ОГТ) ослабление волн-помех; повышать разрешённость записей; восстанавливать истинные соотношения амплитуд отражённых волн, связанные с изменчивостью отражающих свойств границ; суммировать (накапливать) отражённые от ОГТ сигналы; строить временные динамические разрезы и их различных трансформаций (разрезы с изображением мгновенных частот, фаз, амплитуд и т.п.); детально изучать распределение скоростей и строить глубинный динамический разрез, служащий основой для геологической интерпретации.

Способ ОГТ применяется при поиске и разведке месторождений нефти и газа в различных сейсмогеологических условиях. Его применение практически повсеместно повысило глубинность исследований , точность картирования сейсмических границ и качество подготовки структур к глубокому бурению , позволило в ряде нефтегазоносных провинций перейти к подготовке к неантиклинальных ловушек, решать в благоприятных условиях задачи локального прогноза вещественного состава отложений и прогнозировать их нефтегазоносность. Способ ОГТ используют также при изучении и рудных месторождений , решении задач инженерной геологии .

Перспективы дальнейшего совершенствования способа ОГТ связаны с разработкой приёмов наблюдений и обработки данных, обеспечивающих существенное повышение его разрешающей способности, детальности и точности восстановления изображений трёхмерных сложнопостроенных геологических объектов; с разработкой способов геолого-геофизической интерпретации динамических разрезов на структурно-формационной основе в комплексе с данными других методов полевой разведочной геофизики и скважинных исследований.

Поделитесь с друзьями или сохраните для себя:

Загрузка...