Распределение считается нормальным если. Нормальное распределение случайной величины и правило трех сигм. Функция нормального распределения вероятности

В теории вероятностей рассматривается достаточно большое количество разнообразных законов распределения. Для решения задач, связанных с построением контрольных карт, представляют интерес лишь некоторые из них. Важнейшим из них является нормальный закон распределения , который применяется для построения контрольных карт, используемых при контроле по количественному признаку , т.е. когда мы имеем дело с непрерывной случайной величиной. Нормальный закон распределения занимает среди других законов распределения особое положение. Это объясняется тем, что, во-первых, наиболее часто встречается на практике, и, во-вторых, он является предельным законом, к которому приближаются другие законы распределения при весьма часто встречающихся типичных условиях. Что касается второго обстоятельства, то в теории вероятностей доказано, что сумма достаточно большого числа независимых (или слабо зависимых) случайных величин, подчиненных каким угодно законам распределения (при соблюдении некоторых весьма нежестких ограничений), приближенно подчиняется нормальному закону, и это выполняется тем точнее, чем большее количество случайных величин суммируется. Большинство встречающихся на практике случайных величин, таких, например, как ошибки измерений, могут быть представлены как сумма весьма большего числа сравнительно малых слагаемых - элементарных ошибок, каждая из которых вызвана действием отдельной причины, независящей от остальных. Нормальный закон проявляется в тех случаях, когда случайная переменная Х является результатом действия большого числа различных факторов. Каждый фактор в отдельности на величину Х влияет незначительно, и нельзя указать, какой именно влияет в большей степени, чем остальные.

Нормальное распределение (распределение Лапласа–Гаусса ) – распределение вероятностей непрерывной случайной величины Х такое, что плотность распределения вероятностей при - ¥ <х< + ¥ принимает действительное значение:

Ехр (3)

То есть, нормальное распределение характеризуется двумя параметрами m и s, где m - математическое ожидание; s- стандартное отклонение нормального распределения.

Величина s 2 – это дисперсия нормального распределения.

Математическое ожидание m характеризует положение центра распределения, а стандартное отклонение s (СКО) является характеристикой рассеивания (рис. 3).

f(x) f(x)


Рисунок 3 – Функции плотности нормального распределения с:

а) разными математическими ожиданиями m; б) разными СКО s .

Таким образом, значением μ определяется положением кривой распределения на оси абсцисс. Размерность μ - та же, что и размерность случайной величины X . С ростом математического ожидания mобе функции сдвигается параллельно вправо. С убывающей дисперсией s 2 плотность все больше концентрируется вокруг m, в то время как функция распределения становится все более крутой.

Значением σ определяется форма кривой распределения. Поскольку площадь под кривой распределения должна всегда оставаться равной единице, то при увеличении σ кривая распределения становится более плоской. На рис. 3.1 показаны три кривые при разных σ: σ1 = 0,5; σ2 = 1,0; σ3 = 2,0.

Рисунок 3.1 – Функции плотности нормального распределения с разными СКО s .

Функция распределения (интегральная функция) имеет вид (рис. 4):

(4)

Рисунок 4 – Интегральная (а) и дифференциальная (б) функции нормального распределения

Особенно важно то линейное преобразование нормально распределенной случайной переменной Х , после которого получается случайная переменная Z с математическим ожиданием 0 и дисперсией 1. Такое преобразование называется нормированием:

Его можно провести для каждой случайной переменной. Нормирование позволяет все возможные варианты нормального распределения свести к одному случаю: m = 0, s = 1.

Нормальное распределение с m = 0, s = 1 называется нормированным нормальным распределением (стандартизованным) .

Стандартное нормальное распределение (стандартное распределение Лапласа–Гаусса или нормированное нормальное распределение) – это распределение вероятностей стандартизованной нормальной случайной величины Z , плотность распределения которой равна:

при - ¥ <z < + ¥

Значения функции Ф(z) определяется по формуле:

(7)

Значения функции Ф(z) и плотности ф(z) нормированного нормального распределения рассчитаны и сведены в таблицы (табулированы). Таблица составлена только для положительных значений z поэтому:

Ф (z) = 1 Ф (z) (8)

С помощью этих таблиц можно определить не только значения функции и плотности нормированного нормального распределения для заданного z , но и значения функции общего нормального распределения, так как:

; (9)

. 10)

Во многих задачах, связанных с нормально распределенными случайными величинами, приходится определять вероятность попадания случайной величины Х , подчиненной нормальному закону с параметрами m и s, на определенный участок. Таким участком может быть, например, поле допуска на параметр от верхнего значения U до нижнего L .

Вероятность попадания в интервал от х 1 до х 2 можно определить по формуле:

Таким образом, вероятность попадания случайной величины (значение параметра) Х в поле допуска определяется формулой

Можно найти вероятность того, что случайная переменная Х окажется в пределах μ k s. Полученные значения для k =1,2 и 3 следующие (также смотрим рис. 5):

Таким образом, если какое-либо значение появляется за пределами трехсигмового участка, в котором находятся 99,73% всех возможных значений, а вероятность появления такого события очень мала (1:270), следует считать, что рассматриваемое значение оказалось слишком маленьким или слишком большим не из-за случайного варьирования, а из-за существенной помехи в самом процессе, способной вызывать изменения в характере распределения.

Участок, лежащий внутри трехсигмовых границ, называют также областью статистического допуска соответствующей машины или процесса.

по сравнению с другими видами распределений. Главной особенностью этого распределения является то, что к этому закону стремятся все другие законы распределений при бесконечном повторении количества испытаний. Как получается это распределение?

Представим себе, что, взяв ручной динамометр, Вы расположились в самом людном месте Вашего города. И каждому, кто проходит мимо, Вы предлагаете измерить свою силу, сжав динамометр правой или левой рукой. Показания динамометра Вы аккуратно за-писываете. Через некоторое время, при достаточно большом количестве испытаний, Вы нанесли на ось абсцисс показания динамометра, а на ось ординат – количество людей, кото-рые "выжали" это показание. Полученные точки соединили плавной линией. В результате получается кривая, изображенная на рис.9.8 . Вид этой кривой не будет особо изменяться при увеличении времени опыта. Более того, с некоторого момента новые значения будут только уточнять кривую, не изменяя ее формы.


Рис. 9.8.

Теперь переместимся с нашим динамометром в атлетический зал и повторим эксперимент. Теперь максимум кривой сместится вправо, левый конец будет несколько затянут, в то время как правый конец ее будет более крутой (рис.9.9).


Рис. 9.9.

Заметим, что максимальная частота для второго распределения (точка В) будет ниже, чем максимальная частота первого распределения (точка А). Это можно объяснить тем, что общее количество людей, посещающих атлетический зал, будет меньше, чем количество людей, которое прошли возле экспериментатора в первом случае (в центре города в достаточно людном месте). Максимум сместился вправо, так как атлетические залы посещают физически более сильные люди по сравнению с общим фоном.

И, наконец, посетим школы, детские сады и дома престарелых с той же целью: выявить силу рук посетителей этих мест. И опять кривая распределения будет иметь похожую форму, но теперь, очевидно, более крутым будет ее левый конец, а правый более затянут. И как во втором случае, максимум (точка С) будет ниже точки А (рис.9.10).


Рис. 9.10.

Это замечательное свойство нормального распределения – сохранять форму кривой плотности распределения вероятностей (рис. 8 – 10) было замечено и описано в 1733 году Муавром, а затем исследовано Гауссом.

В научных исследованиях, в технике, в массовых явлениях или экспериментах, когда речь идет о многократно повторяющихся случайных величинах при неизменных условиях опыта, говорят, что результаты испытаний испытывают случайное рассеяние, подчиняющееся закону нормальной кривой распределения

(21)

Где - это наиболее часто встречающееся событие. Как правило, в формулу (21) вместо параметра ставят . Причем, чем длин-нее экспериментальный ряд, тем меньше параметр будет отличаться от математического ожидания. Площадь под кривой (рис.9.11) при-нимается равной единице. Площадь , отвечающая какому-либо интервалу оси абсцисс, численно равна вероятности попадания случайного результата в данный интервал .


Рис. 9.11.

Функция нормального распределения имеет вид


(22)

Заметим, что нормальная кривая (рис.9.11) симметрична относительно прямой и асимптотически приближается к оси ОХ при .

Вычислим математическое ожидание для нормального закона


(23)

Свойства нормального распределения

Рассмотрим основные свойства этого важнейшего распределения.

Свойство 1 . Функция плотности нормального распределения (21) определения на всей оси абсцисс.

Свойство 2 . Функция плотности нормального распределения (21) больше нуля для любого из области определения ().

Свойство 3 . При бесконечном увеличении (уменьшении) функция распределения (21) стремится к нулю .

Свойство 4 . При функция распределения , заданная (21), имеет наибольшее значение , равное

(24)

Свойство 5 . График функции (рис.9.11) симметричен относительно прямой .

Свойство 6 . График функции (рис.9.11) имеет по две точки перегиба симметричные относительно прямой :

(25)

Свойство 7 . Все нечетные центральные моменты равны нулю. Заметим, что используя свойство 7, определяют асимметрию функции по формуле . Если , то делают вывод , что исследуемое распределение симметрично относительно прямой . Если , то говорят, что ряд смещен вправо (более пологая правая ветвь графика или затянута). Если , тогда считают, что ряд смещен влево (более пологая левая ветвь графика рис.9.12).


Рис. 9.12.

Свойство 8 . Эксцесс распределения равен 3. Часто на практике вычисляют и по близости этой величины к нулю определяют степень "сжатия" или "размытости" графика (рис.9.13). А так как связан с , то, в конечном итоге характеризует степень рассеяния частоты данных. А так как определяет

Во многих задачах, связанных с нормально распределенными случайными величинами, приходится определять вероятность попадания случайной величины , подчиненной нормальному закону с параметрами , на участок от до . Для вычисления этой вероятности воспользуемся общей формулой

где - функция распределения величины .

Найдем функцию распределения случайной величины , распределенной по нормальному закону с параметрами . Плотность распределения величины равна:

Отсюда находим функцию распределения

. (6.3.3)

Сделаем в интеграле (6.3.3) замену переменной

и приведем его к виду:

(6.3.4)

Интеграл (6.3.4) не выражается через элементарные функции, но его можно вычислить через специальную функцию, выражающую определенный интеграл от выражения или (так называемый интеграл вероятностей), для которого составлены таблицы. Существует много разновидностей таких функций, например:

;

и т.д. Какой из этих функций пользоваться – вопрос вкуса. Мы выберем в качестве такой функции

. (6.3.5)

Нетрудно видеть, что эта функция представляет собой не что иное, как функцию распределения для нормально распределенной случайной величины с параметрами .

Условимся называть функцию нормальной функцией распределения. В приложении (табл. 1) приведены таблицы значений функции .

Выразим функцию распределения (6.3.3) величины с параметрами и через нормальную функцию распределения . Очевидно,

Теперь найдем вероятность попадания случайной величины на участок от до . Согласно формуле (6.3.1)

Таким образом, мы выразили вероятность попадания на участок случайной величины , распределенной по нормальному закону с любыми параметрами, через стандартную функцию распределения , соответствующую простейшему нормальному закону с параметрами 0,1. Заметим, что аргументы функции в формуле (6.3.7) имеют очень простой смысл: есть расстояние от правого конца участка до центра рассеивания, выраженное в средних квадратических отклонениях; - такое же расстояние для левого конца участка, причем это расстояние считается положительным, если конец расположен справа от центра рассеивания, и отрицательным, если слева.

Как и всякая функция распределения, функция обладает свойствами:

3. - неубывающая функция.

Кроме того, из симметричности нормального распределения с параметрами относительно начала координат следует, что

Пользуясь этим свойством, собственно говоря, можно было бы ограничить таблицы функции только положительными значениями аргумента, но, чтобы избежать лишней операции (вычитание из единицы), в таблице 1 приложения приводятся значения как для положительных, так и для отрицательных аргументов.

На практике часто встречается задача вычисления вероятности попадания нормально распределенной случайной величины на участок, симметричный относительно центра рассеивания . Рассмотрим такой участок длины (рис. 6.3.1). Вычислим вероятность попадания на этот участок по формуле (6.3.7):

Учитывая свойство (6.3.8) функции и придавая левой части формулы (6.3.9) более компактный вид, получим формулу для вероятности попадания случайной величины, распределенной по нормальному закону на участок, симметричный относительно центра рассеивания:

. (6.3.10)

Решим следующую задачу. Отложим от центра рассеивания последовательные отрезки длиной (рис. 6.3.2) и вычислим вероятность попадания случайной величины в каждый из них. Так как кривая нормального закона симметрична, достаточно отложить такие отрезки только в одну сторону.

По формуле (6.3.7) находим:

(6.3.11)

Как видно из этих данных, вероятности попадания на каждый из следующих отрезков (пятый, шестой и т.д.) с точностью до 0,001 равны нулю.

Округляя вероятности попадания в отрезки до 0,01 (до 1%), получим три числа, которые легко запомнить:

0,34; 0,14; 0,02.

Сумма этих трех значений равна 0,5. Это значит, что для нормально распределенной случайной величины все рассеивания (с точностью до долей процента) укладывается на участке .

Это позволяет, зная среднее квадратическое отклонение и математическое ожидание случайной величины, ориентировочно указать интервал её практически возможных значений. Такой способ оценки диапазона возможных значений случайной величины известен в математической статистике под названием «правило трех сигма». Из правила трех сигма вытекает также ориентировочный способ определения среднего квадратического отклонения случайной величины: берут максимальное практически возможное отклонение от среднего и делят его на три. Разумеется, этот грубый прием может быть рекомендован, только если нет других, более точных способов определения .

Пример 1. Случайная величина , распределенная по нормальному закону, представляет собой ошибку измерения некоторого расстояния. При измерении допускается систематическая ошибка в сторону завышения на 1,2 (м); среднее квадратическое отклонения ошибки измерения равно 0,8 (м). Найти вероятность того, что отклонение измеренного значения от истинного не превзойдет по абсолютной величине 1,6 (м).

Решение. Ошибка измерения есть случайная величина , подчиненная нормальному закону с параметрами и . Нужно найти вероятность попадания этой величины на участок от до . По формуле (6.3.7) имеем:

Пользуясь таблицами функции (приложение, табл. 1), найдем:

; ,

Пример 2. Найти ту же вероятность, что и в предыдущем примере, но при условии, что систематической ошибки нет.

Решение. По формуле (6.3.10), полагая , найдем:

Пример 3. По цели, имеющей вид полосы (автострада), ширина которой равна 20 м, ведется стрельба в направлении, перпендикулярном автостраде. Прицеливание ведется по средней линии автострады. Среднее квадратическое отклонение в направлении стрельбы равно м. Имеется систематическая ошибка в направлении стрельбы: недолет 3 м. Найти вероятность попадания в автостраду при одном выстреле.

На практике большинство случайных величин, на которых воздействует большое количество случайных факторов, подчиняются нормальному закону распределения вероятностей. Поэтому в различных приложениях теории вероятностей этот закон имеет особое значение.

Случайная величина $X$ подчиняется нормальному закону распределения вероятностей, если ее плотность распределения вероятностей имеет следующий вид

$$f\left(x\right)={{1}\over {\sigma \sqrt{2\pi }}}e^{-{{{\left(x-a\right)}^2}\over {2{\sigma }^2}}}$$

Схематически график функции $f\left(x\right)$ представлен на рисунке и имеет название «Гауссова кривая». Справа от этого графика изображена банкнота в 10 марок ФРГ, которая использовалась еще до появления евро. Если хорошо приглядеться, то на этой банкноте можно заметить гауссову кривую и ее первооткрывателя величайшего математика Карла Фридриха Гаусса.

Вернемся к нашей функции плотности $f\left(x\right)$ и дадим кое-какие пояснения относительно параметров распределения $a,\ {\sigma }^2$. Параметр $a$ характеризует центр рассеивания значений случайной величины, то есть имеет смысл математического ожидания. При изменении параметра $a$ и неизмененном параметре ${\sigma }^2$ мы можем наблюдать смещение графика функции $f\left(x\right)$ вдоль оси абсцисс, при этом сам график плотности не меняет своей формы.

Параметр ${\sigma }^2$ является дисперсией и характеризует форму кривой графика плотности $f\left(x\right)$. При изменении параметра ${\sigma }^2$ при неизмененном параметре $a$ мы можем наблюдать, как график плотности меняет свою форму, сжимаясь или растягиваясь, при этом не сдвигаясь вдоль оси абсцисс.

Вероятность попадания нормально распределенной случайной величины в заданный интервал

Как известно, вероятность попадания случайной величины $X$ в интервал $\left(\alpha ;\ \beta \right)$ можно вычислять $P\left(\alpha < X < \beta \right)=\int^{\beta }_{\alpha }{f\left(x\right)dx}$. Для нормального распределения случайной величины $X$ с параметрами $a,\ \sigma $ справедлива следующая формула:

$$P\left(\alpha < X < \beta \right)=\Phi \left({{\beta -a}\over {\sigma }}\right)-\Phi \left({{\alpha -a}\over {\sigma }}\right)$$

Здесь функция $\Phi \left(x\right)={{1}\over {\sqrt{2\pi }}}\int^x_0{e^{-t^2/2}dt}$ - функция Лапласа. Значения этой функции берутся из . Можно отметить следующие свойства функции $\Phi \left(x\right)$.

1 . $\Phi \left(-x\right)=-\Phi \left(x\right)$, то есть функция $\Phi \left(x\right)$ является нечетной.

2 . $\Phi \left(x\right)$ - монотонно возрастающая функция.

3 . ${\mathop{lim}_{x\to +\infty } \Phi \left(x\right)\ }=0,5$, ${\mathop{lim}_{x\to -\infty } \Phi \left(x\right)\ }=-0,5$.

Для вычисления значений функции $\Phi \left(x\right)$ можно также воспользоваться мастером функция $f_x$ пакета Excel: $\Phi \left(x\right)=НОРМРАСП\left(x;0;1;1\right)-0,5$. Например, вычислим значений функции $\Phi \left(x\right)$ при $x=2$.

Вероятность попадания нормально распределенной случайной величины $X\in N\left(a;\ {\sigma }^2\right)$ в интервал, симметричный относительно математического ожидания $a$, может быть вычислена по формуле

$$P\left(\left|X-a\right| < \delta \right)=2\Phi \left({{\delta }\over {\sigma }}\right).$$

Правило трех сигм . Практически достоверно, что нормально распределенная случайная величина $X$ попадет в интервал $\left(a-3\sigma ;a+3\sigma \right)$.

Пример 1 . Случайная величина $X$ подчинена нормальному закону распределения вероятностей с параметрами $a=2,\ \sigma =3$. Найти вероятность попадания $X$ в интервал $\left(0,5;1\right)$ и вероятность выполнения неравенства $\left|X-a\right| < 0,2$.

Используя формулу

$$P\left(\alpha < X < \beta \right)=\Phi \left({{\beta -a}\over {\sigma }}\right)-\Phi \left({{\alpha -a}\over {\sigma }}\right),$$

находим $P\left(0,5;1\right)=\Phi \left({{1-2}\over {3}}\right)-\Phi \left({{0,5-2}\over {3}}\right)=\Phi \left(-0,33\right)-\Phi \left(-0,5\right)=\Phi \left(0,5\right)-\Phi \left(0,33\right)=0,191-0,129=0,062$.

$$P\left(\left|X-a\right| < 0,2\right)=2\Phi \left({{\delta }\over {\sigma }}\right)=2\Phi \left({{0,2}\over {3}}\right)=2\Phi \left(0,07\right)=2\cdot 0,028=0,056.$$

Пример 2 . Предположим, что в течение года цена на акции некоторой компании есть случайная величина, распределенная по нормальному закону с математическим ожиданием, равным 50 условным денежным единицам, и стандартным отклонением, равным 10. Чему равна вероятность того, что в случайно выбранный день обсуждаемого периода цена за акцию будет:

а) более 70 условных денежных единиц?

б) ниже 50 за акцию?

в) между 45 и 58 условными денежными единицами за акцию?

Пусть случайная величина $X$ - цена на акции некоторой компании. По условию $X$ подчинена нормальному закону распределению с параметрами $a=50$ - математическое ожидание, $\sigma =10$ - стандартное отклонение. Вероятность $P\left(\alpha < X < \beta \right)$ попадания $X$ в интервал $\left(\alpha ,\ \beta \right)$ будем находить по формуле:

$$P\left(\alpha < X < \beta \right)=\Phi \left({{\beta -a}\over {\sigma }}\right)-\Phi \left({{\alpha -a}\over {\sigma }}\right).$$

$$а)\ P\left(X>70\right)=\Phi \left({{\infty -50}\over {10}}\right)-\Phi \left({{70-50}\over {10}}\right)=0,5-\Phi \left(2\right)=0,5-0,4772=0,0228.$$

$$б)\ P\left(X < 50\right)=\Phi \left({{50-50}\over {10}}\right)-\Phi \left({{-\infty -50}\over {10}}\right)=\Phi \left(0\right)+0,5=0+0,5=0,5.$$

$$в)\ P\left(45 < X < 58\right)=\Phi \left({{58-50}\over {10}}\right)-\Phi \left({{45-50}\over {10}}\right)=\Phi \left(0,8\right)-\Phi \left(-0,5\right)=\Phi \left(0,8\right)+\Phi \left(0,5\right)=$$

Закон нормального распределения, так называемый закон Гаусса - один из самых распространенных законов. Это фундаментальный закон в теории вероятностей и в ее применении. Нормальное распределение чаще всего встречается в изучении природных и социально-экономических явлений. Иначе говоря, большинство статистических совокупностей в природе и обществе подчиняется закону нормального распределения. Соответственно можно сказать, что совокупности большого числа крупных по объему выборок подчиняются закону нормального распределения. Те из совокупностей, которые отклоняются от нормального распределения в результате специальных преобразований, могут быть приближены к нормальному. В связи с этим следует помнить, что принципиальная особенность этого закона применительно к другим законам распределения заключается в том, что он является законом границы, к которой приближаются другие законы распределения в определенных (типовых) условиях.

Следует отметить, что термин "нормальное распределение" имеет условный смысл, как общепринятый в математической и статистико-математической литературе термин. Утверждение, что тот или иной признак любого явления подчиняется закону нормального распределения, вовсе не означает незыблемость норм, будто присущих исследуемому явлению, а отнесения последнего ко второму виду закона не означает какую-то анормальнисть данного явления. В этом смысле термин "нормальное распределение" не совсем удачен.

Нормальное распределение (закон Гаусса-Лапласа) является типом непрерывного распределения. Где Муавр (одна тысяча семьсот семьдесят три, Франция) вывел нормальный закон распределения вероятностей. Основные идеи этого открытия были использованы в теории ошибок впервые К. Гауссом (1809, Германия) и А.Лапласом (1812, Франция), которые внесли витчутний теоретический вклад в разработку самого закона. В частности, К. Гаусс в своих разработках исходил из признания наиболее вероятным значением случайной величины-среднюю арифметическую. Общие условия возникновения нормального распределения установил А.М.Ляпунова. Им было доказано, что если исследуемая признак представляет собой результат суммарного воздействия многих факторов, каждый из которых мало связан с большинством остальных, и влияние каждого фактора на конечный результат гораздо перекрывается суммарным воздействием всех остальных факторов, то распределение становится близким к нормальному.

Нормальным называют распределение вероятностей непрерывной случайной величины, имеет плотность:

1 +1 (& #) 2

/ (х, х, <т) = - ^ е 2 ст2

где х - математическое ожидание или средняя величина. Как видно, нормальное распределение определяется двумя параметрами: х и °. Чтобы задать нормальное распределение, достаточно знать математическое ожидание или среднее и среднее квадратическое отклонение. Эти две величины определяют центр группировки и форму

кривой на графике. График функции и (хх, в) называется нормальной кривой (кривая Гаусса) с параметрами х и в (рис. 12).

Кривая нормального распределения имеет точки перегиба при X ± 1. Если представить графически, то между X = + l и 1 = -1 находится 0,683 части всей площади кривой (т.е. 68,3%). В границах X = + 2 и X- 2. находятся 0,954 площади (95,4%), а между X = + 3 и X = - 3 - 0,997 части всей площади распределения (99,7%). На рис. 13 проиллюстрирован характер нормального распределения с одно-, двух- и трисигмовою границами.

При нормальном распределении средняя арифметическая, мода и медиана будут равны между собой. Форма нормальной кривой имеет вид одновершинные симметричной кривой, ветки которой асимптотически приближаются к оси абсцисс. Наибольшая ордината кривой соответствует х = 0. В этой точке на оси абсцисс размещается численное значение признаков, равное средней арифметической, моде и медиане. По обе стороны от вершины кривой ее ветки приходят, изменяя в определенных точках форму выпуклости на вогнутость. Эти точки симметричные и соответствуют значениям х = ± 1, то есть величинам признаки, отклонения которых от средней численно равна среднему квадратичному отклонению. Ордината, что соответствует средней арифметической, делит всю площадь между кривой и осью абсцисс пополам. Итак, вероятности появления значений исследуемого признака больших и меньших средней

арифметической будут равны 0,50, то есть х, (~ ^ х) = 0,50 В

Рис.12. Кривая нормального распределения (кривая Гаусса)

Форму и положение нормальной кривой обусловливают значение средней и среднего квадратичного отклонения. Математически доказано, что изменение величины среднего (математического ожидания) не изменяет формы нормальной кривой, а приводит лишь к ее смещение вдоль оси абсцисс. Кривая сдвигается вправо, если ~ растет, и влево, если ~ приходит.

Рис.14. Кривые нормального распределения с различными значениями параметра в

Об изменении формы графика нормальной кривой при изменении

среднего квадратичного отклонения можно судить по максимуму

дифференциальной функции нормального распределения, равный 1

Как видно, при росте величины ° максимальная ордината кривой будет уменьшаться. Следовательно, кривая нормального распределения будет сжиматься к оси абсцисс и принимать более плосковершинных форму.

И, наоборот, при уменьшении параметра в нормальная кривая вытягивается в положительном направлении оси ординат, а форма "колокола" становится более гостровершиною (рис. 14). Отметим, что независимо от величины параметров ~ и в площадь, ограниченная осью абсцисс и кривой, всегда равен единице (свойство плотности распределения). Это наглядно иллюстрирует график (рис. 13).

Названные выше особенности проявления "нормальности" распределения позволяют выделить ряд общих свойств, которые имеют кривые нормального распределения:

1) любой нормальный кривая достигает точки максимума = х) приходит непрерывно вправо и влево от него, постепенно приближаясь к оси абсцисс;

2) любой нормальный кривая симметрична по отношению к прямой,

параллельной оси ординат и проходит через точку максимума = х)

максимальная ордината равна ^^^ я;

3) любой нормальный кривая имеет форму "колокола", имеет выпуклость, которая направлена вверх к точке максимума. В точках х ~ ° и х + в она меняет выпуклость, и, чем меньше а, тем острее "колокол", а чем больше а, тем более похилишою становится вершина "колокола" (рис.14). Изменение математического ожидания (при неизменной величине

в) не приводит к модификации формы кривой.

При х = 0 и ° = 1 нормальную кривую называют нормированной кривой или нормальным распределением в каноническом виде.

Нормированная кривая описывается следующей формуле:

Построение нормальной кривой по эмпирическим данным производится по формуле:

пи 1 - "" = --- 7 = е

где и ™ - теоретическая частота каждого интервала (группы) распределения; "- Сумма частот, равную объему совокупности; "- шаг интервала;

же - отношение длины окружности к ее диаметру, которое составляет

е - основание натуральных логарифмов, равна 2,71828;

Вторая и третья части формулы) является функцией

нормированного отклонения ЦЧ), которую можно рассчитать для любых значений X. Таблицы значений ЦЧ) обычно называют "таблицы ординат нормальной кривой" (приложение 3). При использовании этих функций рабочая формула нормального распределения приобретает простого вида:

Пример. Рассмотрим случай построения нормальной кривой на примере данных о распределении 57 работников по уровню дневного заработка (табл. 42). По данным таблицы 42, находим среднюю арифметическую:

~ = ^ = И6 54 =

Рассчитываем среднее квадратическое отклонение:

Для каждой строки таблицы находим значение нормированного отклонения

х и ~ х | 12 г => - = - ^ 2 = 1.92

а 6.25 (дд Я первого интервала и т.д.).

В графе 8 табл. 42 записываем табличное значение функции Ди) из приложения, например, для первого интервала X = 1.92 находим "1,9" против "2" (0.0632).

Для вычисления теоретических частот, то есть ординат кривой нормального распределения, вычисляется множитель:

* = ^ = 36,5 а 6,25

Все найденные табличные значения функции / (г) умножаем на 36,5. Так, для первого интервала получаем 0,0632x36,5 = 2,31 т. Принято немногочисленные

частоты (п "<5) объединять (в нашем примере - первые два и последние два интервала).

Если крайние теоретические частоты значительно отличаются от нуля, расхождение между суммами эмпирических и теоретических частот может оказаться значительной.

График распределения эмпирических и теоретических частот (нормальная кривая) по данным рассматриваемого примера показано на рисунке 15.

Рассмотрим пример определения частот нормального распределения для случая, когда в крайних интервалах отсутствует частота (табл. 43). Здесь эмпирическая

X - нормированное отклонение, (в) а - среднее квадратическое отклонение.

частота первого интервала равна нулю. Полученная сумма неуточненных частот не равна сумме их эмпирических значений (56 * 57). В этом случае рассчитывается теоретическая частота для умывания полученных значений центра интервала, нормированного отклонения и его функции.

В таблице 43 эти величины обведено прямоугольником. При построении графика нормальной кривой в таких случаях теоретическую кривую продолжают. В рассматриваемом случае нормальная кривая будет продолжена в сторону отрицательных отклонений от средней, поскольку первая не уточнена частота равна 5. Рассчитана теоретическая частота (уточненная) для первого интервала будет равен единице. По сумме уточнены частоты совпадают с эмпирическими

Таблица 42

Расчетные величины

Статистические параметры

Интервал,

Количество единиц,

х) 2

нормированное отделения,

теоретическая

частота нормального ряда распределения,

/ 0) х - а

>>

Тысяча шестьсот пятьдесят четыре

а = 6,25

^ i = 36,5 а

Таблица 43

Расчет частот нормального распределения (выравнивание эмпирических частот по нормальному закону)

Количество единиц,

Расчетные величины

Статистические параметры

Интервал (и-2)

Срединное значение (центр) интервала,

(je, -xf

^ x t -x) 1 n и

нормированное отклонение

x s - х

t = x --L

табличное значение функции, f (t)

теоретическая

частота нормального ряда распределения

уточненное значение теоретической частоты,

ш

-

-

-

-

-

о = 2,41

Рис. 15. Эмпирический распределение (1) и нормальная кривая (2)

Кривую нормального распределения по исследуемой совокупности можно построить и другим способом (в отличие, от рассмотренного выше). Так, если необходимо иметь приближенную представление о соответствии фактического распределения нормальному, вычисления осуществляют следующим последовательности. Определяют максимальную ординату, которая соответствует среднему размеру признаки), затем, вычислив среднее квадратическое отклонение, рассчитывают координаты точек кривой нормального распределения по схеме, изложенной в таблицах 42 и 43. Так, по исходным и расчетным данным таблицы 43 должны среднюю ~ = 26 Эта величина средней совпадает с центром четвертого интервала (25-27). Итак, частота этого интервала "20" может быть принята (при построении графика) максимальной ординату). Имея исчисленную дисперсию (в = 2,41 см. Табл. 43), рассчитываем значения координат всех необходимых точек кривой нормального распределения (табл. 44, 45). По полученным координатам чертим нормальную кривую (рис. 16), приняв максимальной ординату частоту четвертого интервала.

Согласованность эмпирического распределения с нормальным может быть установлена также путем упрощенных расчетов. Так, если отношение показателя степени асимметрии (^) к своей середнеквадраты-ческой ошибки ш а "или отношение показателя эксцесса (Е х) к своей среднеквадратического ошибки т & превышает по абсолютной величине число« 3 », делается вывод о несоответствии эмпирического распределения характера нормального распределения (то есть,

А ц Е х

если А> 3 или ш е "> 3).

Есть и другие, нетрудоемкие приемы установления "нормальности" распределения: а) сравнение средней арифметической с модой и медианой; б) использование цифр Вестергард; в) применение графического образа с помощью полулогарифмическая сетки Турбина; г) вычисление специальных критериев согласования и др.

Таблица 44

Координаты 7 точек кривой нормального распределения

Таблица 45

Вычисление координат точек кривой нормального распределения

x - 1,5 (7 =

х - а = 23,6

х - 0,5 (7 = = 24,8

х + 0,5ст = 27,2

х + а = 28,4

X + 1,5 (7 =

Рис.16. Кривая нормального распределения, построенная по семи точках

На практике при исследовании совокупности на предмет согласования ее распределения с нормальным часто пользуются "правилом 3сг".

Математически доказано вероятность того, что отклонение от средней по абсолютной величине будет меньше тройного среднего квадратичного отклонения, равно 0,9973, то есть, вероятность того, что абсолютная величина отклонения превышает тройное среднее квадратическое отклонение, равна 0,0027 или очень мала. Исходя из принципа невозможности маловероятных событий, можно считать практически невозможным "случай превышения" 3 ст. Если случайная величина распределена нормально, то абсолютная величина ее отклонения от математического ожидания (средней) не превышает тройного среднего квадратичного отклонения.

В практических расчетах действуют таким образом. Если при неизвестном характере распределения исследуемой случайной величины рассчитанное значение отклонения от средней окажется меньше значения 3 СТ, то есть основания полагать, что исследуемая признак распределена нормально. Если же указанный параметр превысит числовое значение 3 СТ, можно считать, что распределение исследуемой величины не согласуется с нормальным распределением.

Вычисления теоретических частот для исследуемого эмпирического ряда распределения принято называть выравниванием эмпирических кривых по нормальному (или любом другом) закона распределения. Этот процесс имеет важное как теоретическое, так практическое значение. Выравнивание эмпирических данных раскрывает закономерность в их распределении, которая может быть завуалирована случайной формой своего проявления. Установленную таким образом закономерность можно использовать для решения ряда практических задач.

С распределением, близким к нормальному, исследователь встречается в различных сферах науки и областях практической деятельности человека. В экономике такого рода распределения встречаются реже, чем, скажем, в технике или биологии. Обусловлено это самой природой социально-экономических явлений, которые характеризуются большой сложностью взаимосвязанных и взаимосвязанных факторов, а также наличием ряда условий, ограничивающих свободную "игру" случаев. Но экономист должен обращаться к нормальному распределению, анализируя строение эмпирических распределений, как к некоторому эталону. Такое сравнение позволяет выяснить характер тех внутренних условий, которые определяют данную фигуру распределения.

Проникновение сферы статистических исследований в область социально-экономических явлений позволило раскрыть существование большого количества различного типа кривых распределения. Однако не надо считать, что теоретическая концепция кривой нормального распределения вообще мало пригодна в статистико-математическом анализе такого типа явлений. Она может быть не всегда приемлема в анализе конкретного статистического распределения, но в области теории и практики выборочного метода исследования имеет первостепенное значение.

Назовем основные аспекты применения нормального распределения в статистико-математическом анализе.

1. Для определения вероятности конкретного значения признака. Это необходимо при проверке гипотез о соответствии того или иного эмпирического распределения нормальному.

2. При оценке ряда параметров, например, средних, методом максимального правдоподобия. Суть его заключается в определении такого закона, которому подчиняется совокупность. Определяется и оценка, которая дает максимальные значения. Лучшее приближение к параметрам генеральной совокупности дает отношение:

у = - 2 = е 2

3. Для определения вероятности выборочных средних относительно генеральных средних.

4. При определении доверительного интервала, в котором находится приближенное значение характеристик генеральной совокупности.

Поделитесь с друзьями или сохраните для себя:

Загрузка...