15 термодинамические потенциалы преобразование производных термодинамических величин. Термодинамические потенциалы. Системы с переменным числом частиц. Большой термодинамический потенциал

Лекция на тему:”Термодинамические потенциалы”

План:

    Группа потенциалов “E F G H ”, имеющих размерность энергии.

    Зависимость термодинамических потенциалов от числа частиц. Энтропия как термодинамический потенциал.

    Термодинамические потенциалы многокомпонентных систем.

    Практическая реализация метода термодинамических потенциалов (на примере задачи химического равновесия).

Один из основных методов современной термодинамики является метод термодинамических потенциалов. Этот метод возник, во многом, благодаря использованию потенциалов в классической механике, где его изменение связывалось с производимой работой, а сам потенциал является энергетической характеристикой термодинамической системы. Исторически сложилось так, что введенные первоначально термодинамические потенциалы также имели размерность энергии, что и определило их название.

Упомянутая группа включает следующие системы:

Внутренняя энергия;

Свободная энергия или потенциал Гельмгольца ;

Термодинамический потенциал Гиббса ;

Энтальпия .

Потенциальность внутренней энергии была показано в предыдущей теме. Из нее следует потенциальность остальных величин.

Дифференциалы термодинамических потенциалов принимает вид:

Из соотношений (3.1) видно, что соответствующие термодинамические потенциалы характеризуют одну и ту же термодинамическую систему при различных способах …. описания (способах задания состояния термодинамической системы). Так, для адиабатически изолированной системы, описываемой в переменных удобно в качестве термодинамического потенциала использовать внутреннюю энергию.Тогда параметры системы, термодинамически сопряженные к потенциалам, определяются из соотношений:

, , , (3.2)

Если в качестве способа описания используется “система в термостате”, задаваемая переменными , наиболее удобно использовать в качестве потенциала свободную энергию . Соответственно, для параметров системы получим:

, , , (3.3)

Далее, выберем в качестве способа описания модель “системы под поршнем”. В этих случаях функции состояния образуют набор (), а в качестве термодинамического потенциала используется потенциал Гиббса G . Тогда параметры системы определяются из выражений:

, , , (3.4)

И в случае “адиабатической системы над поршнем”, заданной функциями состояния роль термодинамического потенциала играет энтальпия H . Тогда параметры системы принимают вид:

, , , (3.5)

Из того, что соотношения (3.1) задают полные дифференциалы термодинамических потенциалов, мы можем приравнивать их вторые производные.

Например, Учитывая, что

получаем

(3.6а)

Аналогично для остальных параметров системы, связанных с термодинамическим потенциалом , запишем:

(3.6б-е)

Подобные тождества можно записать и для других наборов параметров термодинамического состояния системы на основе потенциальности соответствующих термодинамических функций .

Так, для “системы в термостате” c потенциалом , имеем:

Для системы “над поршнем” с потенциалом Гиббса будут справедливы равенства:

И, наконец, для системы с адиабатическим поршнем с потенциалом H , получим:

Равенства вида (3.6) – (3.9) получили название термодинамических тождеств и в ряде случаев оказываются удобными для практических расчетов.

Использование термодинамических потенциалов позволяет достаточно просто определить работу системы и тепловой эффект .

Так, из соотношений (3.1) следует:

Из первой части равенства следует известное положение о том, что работа теплоизолированной системы () производится за счет убыли ее внутренней энергии. Второе равенство означает, что свободная энергия есть та часть внутренней энергии , которая при изотермическом процессе целиком переходит в работу (соответственно “оставшуюся” часть внутренней энергии иногда называют связанной энергией).

Количество теплоты можно представить в виде:

Из последнего равенства понятно, почему энтальпию еще называют теплосодержанием. При горении и других химических реакциях, происходящих при постоянном давлении (), выделяемое количество теплоты равно изменению энтальпии.

Выражение (3.11), с учетом второго начала термодинамики (2.7) позволяет определить теплоемкость:

Все термодинамические потенциалы типа энергии обладают свойством аддитивности. Поэтому можно записать:

Легко видеть, что потенциал Гиббса содержит только один аддитивный параметр , т.е. удельный потенциал Гиббса от не зависит. Тогда из (3.4) следует:

(3.14) параметрами газа (Т, Р, V) ... система нейтральный молекулярный газ с высоким потенциалом ионизации + свободные электроны, эмиттированные частицами...

  • Термодинамические основы термоупругости

    Курсовая работа >> Физика

    И термоупругости ввел обобщенные комплексные потенциалы термоупругости, позволившие решить различные задачи... Козионов В.А., Испулов Н.А., Баяубаев Е.К. Сейтханова А.К. Динамические и термодинамические процессы в скальных грунтах и строительных конструкциях...

  • Термодинамические характеристики (H,S,G) и возможность самопроизвольного протекания процесса

    Курсовая работа >> Химия

    Университет Кафедра химии Курсовая работа "Термодинамические характеристики (H,S,G) и возможность самопроизвольного...). Найти потенциалы окислителя и восстановителя указать направления протекания процесса. Определить термодинамические характеристики...

  • Термодинамические характеристики участков реакции

    Контрольная работа >> Химия

    CaCO4 = CaO + CO2 Стандартные термодинамические характеристики участков реакции: кДж ∆ ... элемента разности электродных потенциалов катода и анода. ... с более положительным электродным потенциалом , а анодом – электрод с более отрицательным потенциалом . ЭДС = Е...

  • Изменение энтропии однозначно определяет направление и предел самопроизвольного протекания процесса лишь для наиболее простых систем – изолированных. На практике же большей частью приходится иметь дело с системами, взаимодействующими с окружающей средой. Для характеристики процессов, протекающих в закрытых системах, были введены новые термодинамические функции состояния: изобарно-изотермический потенциал (свободная энергия Гиббса ) и изохорно-изотермический потенциал (свободная энергия Гельмгольца ).

    Поведение всякой термодинамической системы в общем случае определяется одновременным действием двух факторов – энтальпийного, отражающего стремление системы к минимуму тепловой энергии, и энтропийного, отражающего противоположную тенденцию – стремление системы к максимальной неупорядоченности. Если для изолированных систем (ΔН = 0) направление и предел самопроизвольного протекания процесса однозначно определяется величиной изменения энтропии системы ΔS, а для систем, находящихся при температурах, близких к абсолютному нулю (S = 0 либо S = const) критерием направленности самопроизвольного процесса является изменение энтальпии ΔН, то для закрытых систем при температурах, не равных нулю, необходимо одновременно учитывать оба фактора. Направлением и предел самопроизвольного протекания процесса в любых системах определяет более общий принцип минимума свободной энергии:

    Самопроизвольно могут протекать только те процессы, которые приводят к понижению свободной энергии системы; система приходит в состояние равновесия, когда свободная энергия достигает минимального значения.

    Для закрытых систем, находящихся в изобарно-изотермических либо изохорно-изотермических условиях свободная энергия принимает вид изобарно-изотермического либо изохорно-изотермического потенциалов (т.н. свободная энергия Гиббса и Гельмгольца соответственно). Данные функции называют иногда просто термодинамическими потенциалами, что не вполне строго, поскольку термодинамическими потенциалами являются также внутренняя энергия (изохорно-изэнтропный) и энтальпия (изобарно-изэнтропный потенциал).

    Рассмотрим закрытую систему, в которой осуществляется равновесный процесс при постоянных температуре и объеме. Выразим работу данного процесса, которую обозначим A max (поскольку работа процесса, проводимого равновесно, максимальна), из уравнений (I.53, I.54):

    (I.69)

    Преобразуем выражение (I.69), сгруппировав члены с одинаковыми индексами:

    Введя обозначение:

    получаем:

    (I.72) (I.73)

    Функция есть изохорно-изотермический потенциал (свободная энергия Гельмгольца), определяющий направление и предел самопроизвольного протекания процесса в закрытой системе, находящейся в изохорно-изотермических условиях.

    Закрытую систему, находящуюся в изобарно-изотермических условиях, характеризует изобарно-изотермический потенциал G:

    (1.75)
    (I.74)

    Поскольку –ΔF = A max , можно записать:

    Величину А" max называют максимальной полезной работой (максимальная работа за вычетом работы расширения). Основываясь на принципе минимума свободной энергии, можно сформулировать условия самопроизвольного протекания процесса в закрытых системах.

    Условия самопроизвольного протекания процессов в закрытых системах:

    Изобарно-изотермические (P = const, T = const):

    ΔG <0, dG <0

    Изохорно-изотермические (V = const, T = const):

    ΔF <0, dF < 0

    Процессы, которые сопровождаются увеличением термодинамических потенциалов, протекают лишь при совершении работы извне над системой. В химии наиболее часто используется изобарно-изотермический потенциал, поскольку большинство химических (и биологических) процессов происходят при постоянном давлении. Для химических процессов величину ΔG можно рассчитать, зная ΔH и ΔS процесса, по уравнению (I.75), либо пользуясь таблицами стандартных термодинамических потенциалов образования веществ ΔG°обр; в этом случае ΔG° реакции рассчитывается аналогично ΔН° по уравнению (I.77):

    Величина стандартного изменения изобарно-изотермического потенциала в ходе химической любой реакции ΔG° 298 есть мера химического сродства исходных веществ. Основываясь на уравнении (I.75), можно оценить вклад энтальпийного и энтропийного факторов в величину ΔG и сделать некоторые обобщающие заключения о возможности самопроизвольного протекания химических процессов, основываясь на знаке величин ΔН и ΔS.

    1. Экзотермические реакции ; ΔH <0.

    а) Если ΔS > 0, то ΔG всегда отрицательно; экзотермические реакции, сопровождающиеся увеличением энтропии, всегда протекают самопроизвольно.

    б) Если ΔS < 0, реакция будет идти самопроизвольно при ΔН > TΔS (низкие температуры).

    2. Эндотермические реакции ; ΔH >0.

    а) Если ΔS > 0, процесс будет самопроизвольным при ΔН < TΔS (высокие температуры).

    б) Если ΔS < 0, то ΔG всегда положительно; самопроизвольное протекание эндотермических реакций, сопровождающихся уменьшением энтропии, невозможно.

    ХИМИЧЕСКОЕ РАВНОВЕСИЕ

    Как было показано выше, протекание самопроизвольного процесса в термодинамической системе сопровождается уменьшением свободной энергии системы (dG < 0, dF < 0). Очевидно, что рано или поздно (напомним, что понятие "время" в термодинамике отсутствует) система достигнет минимума свободной энергии. Условием минимума некоторой функции Y = f(x) является равенство нулю первой производной и положительный знак второй производной: dY = 0; d 2 Y > 0. Таким образом, условием термодинамического равновесия в закрытой системе является минимальное значение соответствующего термодинамического потенциала :

    Изобарно-изотермические (P = const, T = const):

    ΔG =0 dG =0, d 2 G >0

    Изохорно-изотермические (V = const, T = const):

    ΔF =0 dF =0, d 2 F >0

    Состояние системы с минимальной свободной энергией есть состояние термодинамического равновесия:

    Термодинамическим равновесием называется такое термодинамическое состояние системы, которое при постоянстве внешних условий не изменяется во времени, причем эта неизменяемость не обусловлена каким-либо внешним процессом.

    Учение о равновесных состояниях – один из разделов термодинамики. Далее мы будем рассматривать частный случай термодинамического равновесного состояния – химическое равновесие. Как известно, многие химические реакции являются обратимыми, т.е. могут одновременно протекать в обоих направлениях – прямом и обратном. Если проводить обратимую реакцию в закрытой системе, то через некоторое время система придет в состояние химического равновесия – концентрации всех реагирующих веществ перестанут изменяться во времени. Необходимо отметить, что достижение системой состояния равновесия не означает прекращения процесса; химическое равновесие является динамическим , т.е. соответствует одновременному протеканию процесса в противоположных направлениях с одинаковой скоростью. Химическое равновесие является подвижным – всякое бесконечно малое внешнее воздействие на равновесную систему вызывает бесконечно малое изменение состояния системы; по прекращении внешнего воздействия система возвращается в исходное состояние. Ещё одним важным свойством химического равновесия является то, что система может самопроизвольно прийти в состояние равновесия с двух противоположных сторон. Иначе говоря, любое состояние, смежное с равновесным, является менее устойчивым, и переход в него из состояния равновесия всегда связан с необходимостью затраты работы извне.

    Количественной характеристикой химического равновесия является константа равновесия, которая может быть выражена через равновесные концентрации С, парциальные давления P или мольные доли X реагирующих веществ. Для некоторой реакции

    соответствующие константы равновесия выражаются следующим образом:

    (I.78) (I.79) (I.80)

    Константа равновесия есть характерная величина для каждой обратимой химической реакции; величина константы равновесия зависит только от природы реагирующих веществ и температуры. Выражение для константы равновесия для элементарной обратимой реакции может быть выведено из кинетических представлений.

    Рассмотрим процесс установления равновесия в системе, в которой в начальный момент времени присутствуют только исходные вещества А и В. Скорость прямой реакции V 1 в этот момент максимальна, а скорость обратной V 2 равна нулю:

    (I.81)

    (I.82)

    По мере уменьшения концентрации исходных веществ растет концентрация продуктов реакции; соответственно, скорость прямой реакции уменьшается, скорость обратной реакции увеличивается. Очевидно, что через некоторое время скорости прямой и обратной реакции сравняются, после чего концентрации реагирующих веществ перестанут изменяться, т.е. установится химическое равновесие.

    Приняв, что V 1 = V 2 , можно записать:

    (I.84)

    Т.о., константа равновесия есть отношение констант скорости прямой и обратной реакции. Отсюда вытекает физический смысл константы равновесия: она показывает, во сколько раз скорость прямой реакции больше скорости обратной при данной температуре и концентрациях всех реагирующих веществ, равных 1 моль/л.

    Теперь рассмотрим (с некоторыми упрощениями) более строгий термодинамический вывод выражения для константы равновесия. Для этого необходимо ввести понятие химический потенциал . Очевидно, что величина свободной энергии системы будет зависеть как от внешних условий (T, P или V), так и от природы и количества веществ, составляющих систему. В случае, если состав системы изменяется во времени (т.е. в системе протекает химическая реакция), необходимо учесть влияние изменения состава на величину свободной энергии системы. Введем в некоторую систему бесконечно малое количество dn i молей i-го компонента; это вызовет бесконечно малое изменение термодинамического потенциала системы. Отношение бесконечно малого изменения величины свободной энергии системы к бесконечно малому количеству компонента, внесенному в систему, есть химический потенциал μ i данного компонента в системе:

    (I.85) (I.86)

    Химический потенциал компонента связан с его парциальным давлением или концентрацией следующими соотношениями:

    (I.87) (I.88)

    Здесь μ° i – стандартный химический потенциал компонента (P i = 1 атм., С i = 1 моль/л.). Очевидно, что изменение свободной энергии системы можно связать с изменением состава системы следующим образом:

    Поскольку условием равновесия является минимум свободной энергии системы (dG = 0, dF = 0), можно записать:

    В закрытой системе изменение числа молей одного компонента сопровождается эквивалентным изменением числа молей остальных компонентов; т.е., для приведенной выше химической реакции имеет место соотношение:. Если система находится в состоянии химического равновесия, то изменение термодинамического потенциала равно нулю; получаем:

    (I.98) (I.99)

    Здесь с i и р i равновесные концентрации и парциальные давления исходных веществ и продуктов реакции (в отличие от неравновесных С i и Р i в уравнениях I.96 – I.97).

    Поскольку для каждой химической реакции стандартное изменение термодинамического потенциала ΔF° и ΔG° есть строго определенная величина, то произведение равновесных парциальных давлений (концентраций), возведенных в степень, равную стехиометрическому коэффициенту при данном веществе в уравнении химической реакции (стехиометрические коэффициенты при исходных веществах принято считать отрицательными) есть некоторая константа, называемая константой равновесия. Уравнения (I.98, I.99) показывают связь константы равновесия со стандартным изменением свободной энергии в ходе реакции. Уравнение изотермы химической реакции связывает величины реальных концентраций (давлений) реагентов в системе, стандартного изменения термодинамического потенциала в ходе реакции и изменения термодинамического потенциала при переходе из данного состояния системы в равновесное. Знак ΔG (ΔF) определяет возможность самопроизвольного протекания процесса в системе. При этом ΔG° (ΔF°) равно изменению свободной энергии системы при переходе из стандартного состояния (P i = 1 атм., С i = 1 моль/л) в равновесное. Уравнение изотермы химической реакции позволяет рассчитать величину ΔG (ΔF) при переходе из любого состояния системы в равновесное, т.е. ответить на вопрос, будет ли химическая реакция протекать самопроизвольно при данных концентрациях С i (давлениях Р i) реагентов:

    Если изменение термодинамического потенциала меньше нуля, процесс в данных условиях будет протекать самопроизвольно.


    Похожая информация.


    S и обобщённых координат x_1,x_2,... (объёма системы , площади поверхности раздела фаз , длины упругого стержня или пружины, поляризации диэлектрика , намагниченности магнетика , масс компонентов системы и др. ), и термодинамические характеристические функции , получаемые посредством применения преобразования Лежандра к внутренней энергии

    U=U(S,x_1,x_2,...).

    Цель введения термодинамических потенциалов - использование такого набора естественных независимых переменных, описывающих состояние термодинамической системы , который наиболее удобен в конкретной ситуации, с сохранением тех преимуществ, которые даёт применение характеристических функций с размерностью энергии . В частности, убыль термодинамических потенциалов в равновесных процессах, протекающих при постоянстве значений соответствующих естественных переменных, равна полезной внешней работе.

    Термодинамические потенциалы были введены У. Гиббсом , говорившим о «фундаментальных уравнениях (fundamental equations)» ; термин термодинамический потенциал принадлежит Пьеру Дюгему .

    Выделяют следующие термодинамические потенциалы:

    Определения (для систем с постоянным числом частиц)

    Внутренняя энергия

    Определяется в соответствии с первым началом термодинамики , как разность между количеством теплоты , сообщённым системе, и работой , совершённой системой над внешними телами:

    U=Q - A.

    Энтальпия

    Определяется следующим образом:

    H=U + PV,

    Поскольку в изотермическом процессе количество теплоты, полученное системой, равно T \Delta S, то убыль свободной энергии в квазистатическом изотермическом процессе равна работе, совершённой системой над внешними телами.

    Потенциал Гиббса

    Также называемый энергией Гиббса , термодинамическим потенциалом , свободной энергией Гиббса и даже просто свободной энергией (что может привести к смешиванию потенциала Гиббса со свободной энергией Гельмгольца):

    G = H - TS = F + PV = U+PV-TS.

    Термодинамические потенциалы и максимальная работа

    Внутренняя энергия представляет собой полную энергию системы. Однако второе начало термодинамики запрещает превратить всю внутреннюю энергию в работу.

    Можно показать, что максимальная полная работа (как над средой, так и над внешними телами), которая может быть получена от системы в изотермическом процессе , равна убыли свободной энергии Гельмгольца в этом процессе:

    A^f_{max}=-\Delta F,

    где F - свободная энергия Гельмгольца.

    В этом смысле F представляет собой свободную энергию, допускающую преобразование в работу. Оставшаяся часть внутренней энергии может быть названа связанной .

    В некоторых приложениях приходится различать полную и полезную работу. Последняя представляет собой работу системы над внешними телами, исключая среду, в которую она погружена. Максимальная полезная работа системы равна

    A^u_{max}=-\Delta G

    где G - энергия Гиббса.

    В этом смысле энергия Гиббса также является свободной .

    Каноническое уравнение состояния

    Задание термодинамического потенциала некоторой системы в определённой форме эквивалентно заданию уравнения состояния этой системы.

    Соответствующие дифференциалы термодинамических потенциалов:

    • для внутренней энергии
    dU= \delta Q - \delta A=T dS - P dV,
    • для энтальпии
    dH = dU + d(PV) = T dS - P dV + P dV + V dP = T dS + V dP,
    • для свободной энергии Гельмгольца
    dF = dU - d(TS) = T dS - P dV - T dS - S dT = -P dV - S dT,
    • для потенциала Гиббса
    dG = dH - d(TS) = T dS + V dP - T dS - S dT = V dP - S dT.

    Эти выражения математически можно рассматривать как полные дифференциалы функций двух соответствующих независимых переменных. Поэтому естественно рассматривать термодинамические потенциалы как функции:

    U = U(S,V), H = H(S,P), F = F(T,V), G = G(T,P).

    Задание любой из этих четырёх зависимостей - то есть конкретизация вида функций U(S,V), H(S,P), F(T,V), G(T,P) - позволяет получить всю информацию о свойствах системы. Так, например, если нам задана внутренняя энергия U как функция энтропии S и объёма V, оставшиеся параметры могут быть получены дифференцированием:

    T={\left(\frac{\partial U}{\partial S}\right)}_V P=-{\left(\frac{\partial U}{\partial V}\right)}_S

    Здесь индексы V и S означают постоянство второй переменной, от которой зависит функция. Эти равенства становятся очевидными, если учесть, что dU = T dS - P dV.

    Задание одного из термодинамических потенциалов как функции соответствующих переменных, как записано выше, представляет собой каноническое уравнение состояния системы. Как и другие уравнения состояния, оно справедливо лишь для состояний термодинамического равновесия . В неравновесных состояниях эти зависимости могут не выполняться.

    Переход от одних термодинамических потенциалов к другим. Формулы Гиббса - Гельмгольца

    Значения всех термодинамических потенциалов в определённых переменных могут быть выражены через потенциал, дифференциал которого является полным в этих переменных. К примеру, для простых систем в переменных V, T термодинамические потенциалы можно выразить через свободную энергию Гельмгольца:

    U = - T^2 \left(\frac{\partial}{\partial T }\frac{F}{T} \right)_{V},

    H = - T^2 \left(\frac{\partial}{\partial T }\frac{F}{T} \right)_{V} - V \left(\frac{\partial F}{\partial V}\right)_{T} ,

    G= F- V \left(\frac{\partial F}{\partial V}\right)_{T} .

    Первая из этих формул называется формулой Гиббса - Гельмгольца , но иногда этот термин применяют ко всем подобным формулам, в которых температура является единственной независимой переменной .

    Метод термодинамических потенциалов. Соотношения Максвелла

    Метод термодинамических потенциалов помогает преобразовывать выражения, в которые входят основные термодинамические переменные и тем самым выражать такие «труднонаблюдаемые» величины, как количество теплоты, энтропию, внутреннюю энергию через измеряемые величины - температуру, давление и объём и их производные.

    Рассмотрим опять выражение для полного дифференциала внутренней энергии:

    dU = T dS - P dV.

    Известно, что если смешанные производные существуют и непрерывны, то они не зависят от порядка дифференцирования, то есть

    \frac{\partial^2 U}{\partial V \partial S}=\frac{\partial^2 U}{\partial S \partial V}.

    Но {\left(\frac{\partial U}{\partial V}\right)}_S=-P и {\left(\frac{\partial U}{\partial S}\right)}_V=T, поэтому

    {\left(\frac{\partial P}{\partial S}\right)}_V=-{\left(\frac{\partial T}{\partial V}\right)}_S.

    Рассматривая выражения для других дифференциалов, получаем:

    {\left(\frac{\partial T}{\partial P}\right)}_S={\left(\frac{\partial V}{\partial S}\right)}_P, {\left(\frac{\partial S}{\partial V}\right)}_T={\left(\frac{\partial P}{\partial T}\right)}_V, {\left(\frac{\partial S}{\partial P}\right)}_T=-{\left(\frac{\partial V}{\partial T}\right)}_P.

    Эти соотношения называются соотношениями Максвелла . Заметим, что они не выполняются в случае разрывности смешанных производных, что имеет место при фазовых переходах 1-го и 2-го рода.

    Системы с переменным числом частиц. Большой термодинамический потенциал

    Химический потенциал (\mu ) компонента определяется как энергия, которую необходимо затратить для того, чтобы добавить в систему бесконечно малое молярное количество этого компонента. Тогда выражения для дифференциалов термодинамических потенциалов могут быть записаны так:

    dU = T dS - P dV + \mu dN, dH = T dS + V dP + \mu dN, dF = -S dT - P dV + \mu dN, dG = -S dT + V dP + \mu dN.

    Поскольку термодинамические потенциалы должны быть аддитивными функциями числа частиц в системе, канонические уравнения состояния принимают такой вид (с учётом того, что S и V - аддитивные величины, а T и P - нет):

    U = U(S,V,N) = N f \left(\frac{S}{N},\frac{V}{N}\right), H = H(S,P,N) = N f \left(\frac{S}{N},P\right), F = F(T,V,N) = N f \left(T,\frac{V}{N}\right), G = G(T,P,N) = N f \left(T,P\right).

    И, поскольку \frac{d G}{dN}=\mu, из последнего выражения следует, что

    G = \mu N ,

    то есть химический потенциал - это удельный потенциал Гиббса (на одну частицу).

    Для большого канонического ансамбля (то есть для статистического ансамбля состояний системы с переменным числом частиц и равновесным химическим потенциалом) может быть определён большой термодинамический потенциал , связывающий свободную энергию с химическим потенциалом:

    \Omega = F - \mu N = - P V; d \Omega = -S dT - N d \mu - P dV

    Нетрудно проверить, что так называемая связанная энергия T S является термодинамическим потенциалом для системы, заданной с постоянными S P \mu.

    Потенциалы и термодинамическое равновесие

    В состоянии равновесия зависимость термодинамических потенциалов от соответствующих переменных определяется каноническим уравнением состояния этой системы. Однако в состояниях, отличных от равновесного, эти соотношения теряют силу. Тем не менее, для неравновесных состояний термодинамические потенциалы также существуют.

    Таким образом, при фиксированных значениях своих переменных потенциал может принимать различные значения, одно из которых соответствует состоянию термодинамического равновесия.

    Можно показать, что в состоянии термодинамического равновесия соответствующее значение потенциала минимально. Поэтому равновесие является устойчивым.

    Нижеприведённая таблица показывает, минимуму какого потенциала соответствует состояние устойчивого равновесия системы с заданными фиксированными параметрами.

    фиксированные параметры термодинамический потенциал
    S,V,N внутренняя энергия
    S,P,N энтальпия
    T,V,N свободная энергия Гельмгольца
    T,P,N потенциал Гиббса
    T,V,\mu Большой термодинамический потенциал
    S,P,\mu связанная энергия

    Напишите отзыв о статье "Термодинамические потенциалы"

    Примечания

    Литература

    • Duhem P. . - Paris: A. Hermann, 1886. - XI + 247 с.
    • Gibbs J. Willard. The Collected Works. - N. Y. - London - Toronto: Longmans, Green and Co., 1928. - Т. 1. - XXVIII + 434 с.
    • Базаров И. П. - М .: Высшая школа, 1991. 376 с.
    • Базаров И. П. Заблуждения и ошибки в термодинамике. Изд. 2-е испр. - М .: Едиториал УРСС, 2003. 120 с.
    • Гиббс Дж. В. Термодинамика. Статистическая механика. - М .: Наука, 1982. - 584 с. - (Классики науки).
    • Гухман А. А. Об основаниях термодинамики. - 2-е изд., испр. - М .: Изд-во ЛКИ, 2010. - 384 с. - ISBN 978-5-382-01105-9 .
    • Зубарев Д.Н. Неравновесная статистическая термодинамика. М .: Наука, 1971. 416 с.
    • Квасников И. А. Термодинамика и статистическая физика. Теория равновесных систем, том. 1. - М .: Изд-во МГУ, 1991. (2-е изд., испр. и доп. М .: УРСС, 2002. 240 с.)
    • Кричевский И. Р. Понятия и основы термодинамики. - 2-е изд., пересмотр. и доп. - М .: Химия, 1970. - 440 с.
    • Кубо Р. Термодинамика. - М .: Мир, 1970. - 304 с.
    • Ландау, Л. Д. , Лифшиц, Е. М. Статистическая физика. Часть 1. - Издание 3-е, дополненное. - М .: Наука , 1976. - 584 с. - («Теоретическая физика », том V).
    • Майер Дж., Гепперт-Майер М. Статистическая механика. М .: Мир, 1980.
    • Мюнстер А. Химическая термодинамика. - М .: Мир, 1971. - 296 с.
    • Сивухин Д. В. Общий курс физики. - М .: Наука , 1975. - Т. II. Термодинамика и молекулярная физика. - 519 с.
    • Сычев В. В. Сложные термодинамические системы. - 4-е изд., перераб. и доп.. - М: Энергоатомиздат, 1986. - 208 с.
    • Термодинамика. Основные понятия. Терминология. Буквенные обозначения величин. Сборник определений, вып. 103/ Комитет научно-технической терминологии АН СССР. М.: Наука, 1984

    Отрывок, характеризующий Термодинамические потенциалы

    Она смотрела туда, где она знала, что был он; но она не могла его видеть иначе, как таким, каким он был здесь. Она видела его опять таким же, каким он был в Мытищах, у Троицы, в Ярославле.
    Она видела его лицо, слышала его голос и повторяла его слова и свои слова, сказанные ему, и иногда придумывала за себя и за него новые слова, которые тогда могли бы быть сказаны.
    Вот он лежит на кресле в своей бархатной шубке, облокотив голову на худую, бледную руку. Грудь его страшно низка и плечи подняты. Губы твердо сжаты, глаза блестят, и на бледном лбу вспрыгивает и исчезает морщина. Одна нога его чуть заметно быстро дрожит. Наташа знает, что он борется с мучительной болью. «Что такое эта боль? Зачем боль? Что он чувствует? Как у него болит!» – думает Наташа. Он заметил ее вниманье, поднял глаза и, не улыбаясь, стал говорить.
    «Одно ужасно, – сказал он, – это связать себя навеки с страдающим человеком. Это вечное мученье». И он испытующим взглядом – Наташа видела теперь этот взгляд – посмотрел на нее. Наташа, как и всегда, ответила тогда прежде, чем успела подумать о том, что она отвечает; она сказала: «Это не может так продолжаться, этого не будет, вы будете здоровы – совсем».
    Она теперь сначала видела его и переживала теперь все то, что она чувствовала тогда. Она вспомнила продолжительный, грустный, строгий взгляд его при этих словах и поняла значение упрека и отчаяния этого продолжительного взгляда.
    «Я согласилась, – говорила себе теперь Наташа, – что было бы ужасно, если б он остался всегда страдающим. Я сказала это тогда так только потому, что для него это было бы ужасно, а он понял это иначе. Он подумал, что это для меня ужасно бы было. Он тогда еще хотел жить – боялся смерти. И я так грубо, глупо сказала ему. Я не думала этого. Я думала совсем другое. Если бы я сказала то, что думала, я бы сказала: пускай бы он умирал, все время умирал бы перед моими глазами, я была бы счастлива в сравнении с тем, что я теперь. Теперь… Ничего, никого нет. Знал ли он это? Нет. Не знал и никогда не узнает. И теперь никогда, никогда уже нельзя поправить этого». И опять он говорил ей те же слова, но теперь в воображении своем Наташа отвечала ему иначе. Она останавливала его и говорила: «Ужасно для вас, но не для меня. Вы знайте, что мне без вас нет ничего в жизни, и страдать с вами для меня лучшее счастие». И он брал ее руку и жал ее так, как он жал ее в тот страшный вечер, за четыре дня перед смертью. И в воображении своем она говорила ему еще другие нежные, любовные речи, которые она могла бы сказать тогда, которые она говорила теперь. «Я люблю тебя… тебя… люблю, люблю…» – говорила она, судорожно сжимая руки, стискивая зубы с ожесточенным усилием.
    И сладкое горе охватывало ее, и слезы уже выступали в глаза, но вдруг она спрашивала себя: кому она говорит это? Где он и кто он теперь? И опять все застилалось сухим, жестким недоумением, и опять, напряженно сдвинув брови, она вглядывалась туда, где он был. И вот, вот, ей казалось, она проникает тайну… Но в ту минуту, как уж ей открывалось, казалось, непонятное, громкий стук ручки замка двери болезненно поразил ее слух. Быстро и неосторожно, с испуганным, незанятым ею выражением лица, в комнату вошла горничная Дуняша.
    – Пожалуйте к папаше, скорее, – сказала Дуняша с особенным и оживленным выражением. – Несчастье, о Петре Ильиче… письмо, – всхлипнув, проговорила она.

    Кроме общего чувства отчуждения от всех людей, Наташа в это время испытывала особенное чувство отчуждения от лиц своей семьи. Все свои: отец, мать, Соня, были ей так близки, привычны, так будничны, что все их слова, чувства казались ей оскорблением того мира, в котором она жила последнее время, и она не только была равнодушна, но враждебно смотрела на них. Она слышала слова Дуняши о Петре Ильиче, о несчастии, но не поняла их.
    «Какое там у них несчастие, какое может быть несчастие? У них все свое старое, привычное и покойное», – мысленно сказала себе Наташа.
    Когда она вошла в залу, отец быстро выходил из комнаты графини. Лицо его было сморщено и мокро от слез. Он, видимо, выбежал из той комнаты, чтобы дать волю давившим его рыданиям. Увидав Наташу, он отчаянно взмахнул руками и разразился болезненно судорожными всхлипываниями, исказившими его круглое, мягкое лицо.
    – Пе… Петя… Поди, поди, она… она… зовет… – И он, рыдая, как дитя, быстро семеня ослабевшими ногами, подошел к стулу и упал почти на него, закрыв лицо руками.
    Вдруг как электрический ток пробежал по всему существу Наташи. Что то страшно больно ударило ее в сердце. Она почувствовала страшную боль; ей показалось, что что то отрывается в ней и что она умирает. Но вслед за болью она почувствовала мгновенно освобождение от запрета жизни, лежавшего на ней. Увидав отца и услыхав из за двери страшный, грубый крик матери, она мгновенно забыла себя и свое горе. Она подбежала к отцу, но он, бессильно махая рукой, указывал на дверь матери. Княжна Марья, бледная, с дрожащей нижней челюстью, вышла из двери и взяла Наташу за руку, говоря ей что то. Наташа не видела, не слышала ее. Она быстрыми шагами вошла в дверь, остановилась на мгновение, как бы в борьбе с самой собой, и подбежала к матери.
    Графиня лежала на кресле, странно неловко вытягиваясь, и билась головой об стену. Соня и девушки держали ее за руки.
    – Наташу, Наташу!.. – кричала графиня. – Неправда, неправда… Он лжет… Наташу! – кричала она, отталкивая от себя окружающих. – Подите прочь все, неправда! Убили!.. ха ха ха ха!.. неправда!
    Наташа стала коленом на кресло, нагнулась над матерью, обняла ее, с неожиданной силой подняла, повернула к себе ее лицо и прижалась к ней.
    – Маменька!.. голубчик!.. Я тут, друг мой. Маменька, – шептала она ей, не замолкая ни на секунду.
    Она не выпускала матери, нежно боролась с ней, требовала подушки, воды, расстегивала и разрывала платье на матери.
    – Друг мой, голубушка… маменька, душенька, – не переставая шептала она, целуя ее голову, руки, лицо и чувствуя, как неудержимо, ручьями, щекоча ей нос и щеки, текли ее слезы.
    Графиня сжала руку дочери, закрыла глаза и затихла на мгновение. Вдруг она с непривычной быстротой поднялась, бессмысленно оглянулась и, увидав Наташу, стала из всех сил сжимать ее голову. Потом она повернула к себе ее морщившееся от боли лицо и долго вглядывалась в него.
    – Наташа, ты меня любишь, – сказала она тихим, доверчивым шепотом. – Наташа, ты не обманешь меня? Ты мне скажешь всю правду?
    Наташа смотрела на нее налитыми слезами глазами, и в лице ее была только мольба о прощении и любви.
    – Друг мой, маменька, – повторяла она, напрягая все силы своей любви на то, чтобы как нибудь снять с нее на себя излишек давившего ее горя.
    И опять в бессильной борьбе с действительностью мать, отказываясь верить в то, что она могла жить, когда был убит цветущий жизнью ее любимый мальчик, спасалась от действительности в мире безумия.
    Наташа не помнила, как прошел этот день, ночь, следующий день, следующая ночь. Она не спала и не отходила от матери. Любовь Наташи, упорная, терпеливая, не как объяснение, не как утешение, а как призыв к жизни, всякую секунду как будто со всех сторон обнимала графиню. На третью ночь графиня затихла на несколько минут, и Наташа закрыла глаза, облокотив голову на ручку кресла. Кровать скрипнула. Наташа открыла глаза. Графиня сидела на кровати и тихо говорила.
    – Как я рада, что ты приехал. Ты устал, хочешь чаю? – Наташа подошла к ней. – Ты похорошел и возмужал, – продолжала графиня, взяв дочь за руку.
    – Маменька, что вы говорите!..
    – Наташа, его нет, нет больше! – И, обняв дочь, в первый раз графиня начала плакать.

    Княжна Марья отложила свой отъезд. Соня, граф старались заменить Наташу, но не могли. Они видели, что она одна могла удерживать мать от безумного отчаяния. Три недели Наташа безвыходно жила при матери, спала на кресле в ее комнате, поила, кормила ее и не переставая говорила с ней, – говорила, потому что один нежный, ласкающий голос ее успокоивал графиню.
    Душевная рана матери не могла залечиться. Смерть Пети оторвала половину ее жизни. Через месяц после известия о смерти Пети, заставшего ее свежей и бодрой пятидесятилетней женщиной, она вышла из своей комнаты полумертвой и не принимающею участия в жизни – старухой. Но та же рана, которая наполовину убила графиню, эта новая рана вызвала Наташу к жизни.
    Душевная рана, происходящая от разрыва духовного тела, точно так же, как и рана физическая, как ни странно это кажется, после того как глубокая рана зажила и кажется сошедшейся своими краями, рана душевная, как и физическая, заживает только изнутри выпирающею силой жизни.
    Так же зажила рана Наташи. Она думала, что жизнь ее кончена. Но вдруг любовь к матери показала ей, что сущность ее жизни – любовь – еще жива в ней. Проснулась любовь, и проснулась жизнь.
    Последние дни князя Андрея связали Наташу с княжной Марьей. Новое несчастье еще более сблизило их. Княжна Марья отложила свой отъезд и последние три недели, как за больным ребенком, ухаживала за Наташей. Последние недели, проведенные Наташей в комнате матери, надорвали ее физические силы.
    Однажды княжна Марья, в середине дня, заметив, что Наташа дрожит в лихорадочном ознобе, увела ее к себе и уложила на своей постели. Наташа легла, но когда княжна Марья, опустив сторы, хотела выйти, Наташа подозвала ее к себе.
    – Мне не хочется спать. Мари, посиди со мной.
    – Ты устала – постарайся заснуть.
    – Нет, нет. Зачем ты увела меня? Она спросит.
    – Ей гораздо лучше. Она нынче так хорошо говорила, – сказала княжна Марья.
    Наташа лежала в постели и в полутьме комнаты рассматривала лицо княжны Марьи.
    «Похожа она на него? – думала Наташа. – Да, похожа и не похожа. Но она особенная, чужая, совсем новая, неизвестная. И она любит меня. Что у ней на душе? Все доброе. Но как? Как она думает? Как она на меня смотрит? Да, она прекрасная».
    – Маша, – сказала она, робко притянув к себе ее руку. – Маша, ты не думай, что я дурная. Нет? Маша, голубушка. Как я тебя люблю. Будем совсем, совсем друзьями.
    И Наташа, обнимая, стала целовать руки и лицо княжны Марьи. Княжна Марья стыдилась и радовалась этому выражению чувств Наташи.
    С этого дня между княжной Марьей и Наташей установилась та страстная и нежная дружба, которая бывает только между женщинами. Они беспрестанно целовались, говорили друг другу нежные слова и большую часть времени проводили вместе. Если одна выходила, то другаябыла беспокойна и спешила присоединиться к ней. Они вдвоем чувствовали большее согласие между собой, чем порознь, каждая сама с собою. Между ними установилось чувство сильнейшее, чем дружба: это было исключительное чувство возможности жизни только в присутствии друг друга.
    Иногда они молчали целые часы; иногда, уже лежа в постелях, они начинали говорить и говорили до утра. Они говорили большей частию о дальнем прошедшем. Княжна Марья рассказывала про свое детство, про свою мать, про своего отца, про свои мечтания; и Наташа, прежде с спокойным непониманием отворачивавшаяся от этой жизни, преданности, покорности, от поэзии христианского самоотвержения, теперь, чувствуя себя связанной любовью с княжной Марьей, полюбила и прошедшее княжны Марьи и поняла непонятную ей прежде сторону жизни. Она не думала прилагать к своей жизни покорность и самоотвержение, потому что она привыкла искать других радостей, но она поняла и полюбила в другой эту прежде непонятную ей добродетель. Для княжны Марьи, слушавшей рассказы о детстве и первой молодости Наташи, тоже открывалась прежде непонятная сторона жизни, вера в жизнь, в наслаждения жизни.
    Они всё точно так же никогда не говорили про него с тем, чтобы не нарушать словами, как им казалось, той высоты чувства, которая была в них, а это умолчание о нем делало то, что понемногу, не веря этому, они забывали его.
    Наташа похудела, побледнела и физически так стала слаба, что все постоянно говорили о ее здоровье, и ей это приятно было. Но иногда на нее неожиданно находил не только страх смерти, но страх болезни, слабости, потери красоты, и невольно она иногда внимательно разглядывала свою голую руку, удивляясь на ее худобу, или заглядывалась по утрам в зеркало на свое вытянувшееся, жалкое, как ей казалось, лицо. Ей казалось, что это так должно быть, и вместе с тем становилось страшно и грустно.
    Один раз она скоро взошла наверх и тяжело запыхалась. Тотчас же невольно она придумала себе дело внизу и оттуда вбежала опять наверх, пробуя силы и наблюдая за собой.
    Другой раз она позвала Дуняшу, и голос ее задребезжал. Она еще раз кликнула ее, несмотря на то, что она слышала ее шаги, – кликнула тем грудным голосом, которым она певала, и прислушалась к нему.
    Она не знала этого, не поверила бы, но под казавшимся ей непроницаемым слоем ила, застлавшим ее душу, уже пробивались тонкие, нежные молодые иглы травы, которые должны были укорениться и так застлать своими жизненными побегами задавившее ее горе, что его скоро будет не видно и не заметно. Рана заживала изнутри. В конце января княжна Марья уехала в Москву, и граф настоял на том, чтобы Наташа ехала с нею, с тем чтобы посоветоваться с докторами.

    термодинамические потенциалы, термодинамические потенциалы элементов

    Термодинами́ческие потенциа́лы - внутренняя энергия, рассматриваемая как функция энтропии и обобщённых координат (объёма системы, площади поверхности раздела фаз, длины упругого стержня или пружины, поляризации диэлектрика, намагниченности магнетика, масс компонентов системы и др.), и термодинамические характеристические функции, получаемые посредством применения преобразования Лежандра к внутренней энергии

    .

    Цель введения термодинамических потенциалов - использование такого набора естественных независимых переменных, описывающих состояние термодинамической системы, который наиболее удобен в конкретной ситуации, с сохранением тех преимуществ, которые даёт применение характеристических функций с размерностью энергии. частности, убыль термодинамических потенциалов в равновесных процессах, протекающих при постоянстве значений соответствующих естественных переменных, равна полезной внешней работе.

    Термодинамические потенциалы были введены У. Гиббсом, говорившим о «фундаментальных уравнениях (fundamental equations)»; термин термодинамический потенциал принадлежит Пьеру Дюгему.

    Выделяют следующие термодинамические потенциалы:

    • внутренняя энергия
    • энтальпия
    • свободная энергия Гельмгольца
    • потенциал Гиббса
    • большой термодинамический потенциал
    • 1 Определения (для систем с постоянным числом частиц)
      • 1.1 Внутренняя энергия
      • 1.2 Энтальпия
      • 1.3 Свободная энергия Гельмгольца
      • 1.4 Потенциал Гиббса
    • 2 Термодинамические потенциалы и максимальная работа
    • 3 Каноническое уравнение состояния
    • 4 Переход от одних термодинамических потенциалов к другим. Формулы Гиббса - Гельмгольца
    • 5 Метод термодинамических потенциалов. Соотношения Максвелла
    • 6 Системы с переменным числом частиц. Большой термодинамический потенциал
    • 7 Потенциалы и термодинамическое равновесие
    • 8 Примечания
    • 9 Литература

    Определения (для систем с постоянным числом частиц)

    Внутренняя энергия

    Определяется в соответствии с первым началом термодинамики, как разность между количеством теплоты, сообщенным системе, и работой, совершенной системой над внешними телами:

    .

    Энтальпия

    Определяется следующим образом:

    ,

    где - давление, а - объём.

    Поскольку в изобарном процессе работа равна, приращение энтальпии в квазистатическом изобарном процессе равно количеству теплоты, полученному системой.

    Свободная энергия Гельмгольца

    Также часто называемый просто свободной энергией . Определяется следующим образом:

    ,

    где - температура и - энтропия.

    Поскольку в изотермическом процессе количество теплоты, полученное системой, равно, то убыль свободной энергии в квазистатическом изотермическом процессе равна работе, совершённой системой над внешними телами.

    Потенциал Гиббса

    Также называемый энергией Гиббса , термодинамическим потенциалом , свободной энергией Гиббса и даже просто свободной энергией (что может привести к смешиванию потенциала Гиббса со свободной энергией Гельмгольца):

    .

    Термодинамические потенциалы и максимальная работа

    Внутренняя энергия представляет собой полную энергию системы. Однако второе начало термодинамики запрещает превратить всю внутреннюю энергию в работу.

    Можно показать, что максимальная полная работа (как над средой, так и над внешними телами), которая может быть получена от системы в изотермическом процессе, равна убыли свободной энергии Гельмгольца в этом процессе:

    ,

    где - свободная энергия Гельмгольца.

    В этом смысле представляет собой свободную энергию, допускающую преобразование в работу. Оставшаяся часть внутренней энергии может быть названа связанной.

    В некоторых приложениях приходится различать полную и полезную работу. Последняя представляет собой работу системы над внешними телами, исключая среду, в которую она погружена. Максимальная полезная работа системы равна

    где - энергия Гиббса.

    В этом смысле энергия Гиббса также является свободной.

    Каноническое уравнение состояния

    Задание термодинамического потенциала некоторой системы в определенной форме эквивалентно заданию уравнения состояния этой системы.

    Соответствующие дифференциалы термодинамических потенциалов:

    • для внутренней энергии
    ,
    • для энтальпии
    ,
    • для свободной энергии Гельмгольца
    ,
    • для потенциала Гиббса
    .

    Эти выражения математически можно рассматривать как полные дифференциалы функций двух соответствующих независимых переменных. Поэтому естественно рассматривать термодинамические потенциалы как функции:

    , .

    Задание любой из этих четырёх зависимостей - то есть конкретизация вида функций, - позволяет получить всю информацию о свойствах системы. Так, например, если нам задана внутренняя энергия как функция энтропии и объёма, оставшиеся параметры могут быть получены дифференцированием:

    Здесь индексы и означают постоянство второй переменной, от которой зависит функция. Эти равенства становятся очевидными, если учесть, что.

    Задание одного из термодинамических потенциалов как функции соответствующих переменных, как записано выше, представляет собой каноническое уравнение состояния системы. Как и другие уравнения состояния, оно справедливо лишь для состояний термодинамического равновесия. неравновесных состояниях эти зависимости могут не выполняться.

    Переход от одних термодинамических потенциалов к другим. Формулы Гиббса - Гельмгольца

    Значения всех термодинамических потенциалов в определённых переменных могут быть выражены через потенциал, дифференциал которого является полным в этих переменных. К примеру, для простых систем в переменных, термодинамические потенциалы можно выразить через свободную энергию Гельмгольца:

    Первая из этих формул называется формулой Гиббса - Гельмгольца, но иногда этот термин применяют ко ко всем подобным формулам, в которых температура является единственной независимой переменной.

    Метод термодинамических потенциалов. Соотношения Максвелла

    Метод термодинамических потенциалов помогает преобразовывать выражения, в которые входят основные термодинамические переменные и тем самым выражать такие «труднонаблюдаемые» величины, как количество теплоты, энтропию, внутреннюю энергию через измеряемые величины - температуру, давление и объём и их производные.

    Рассмотрим опять выражение для полного дифференциала внутренней энергии:

    .

    Известно, что если смешанные производные существуют и непрерывны, то они не зависят от порядка дифференцирования, то есть

    .

    Но и, поэтому

    .

    Рассматривая выражения для других дифференциалов, получаем:

    , .

    Эти соотношения называются соотношениями Максвелла. Заметим, что они не выполняются в случае разрывности смешанных производных, что имеет место при фазовых переходах 1-го и 2-го рода.

    Системы с переменным числом частиц. Большой термодинамический потенциал

    Химический потенциал () компонента определяется как энергия, которую необходимо затратить для того, чтобы добавить в систему бесконечно малое молярное количество этого компонента. Тогда выражения для дифференциалов термодинамических потенциалов могут быть записаны так:

    , .

    Поскольку термодинамические потенциалы должны быть аддитивными функциями числа частиц в системе, канонические уравнения состояния принимают такой вид (с учётом того, что S и V - аддитивные величины, а T и P - нет):

    , .

    И, поскольку, из последнего выражения следует, что

    ,

    то есть химический потенциал - это удельный потенциал Гиббса (на одну частицу).

    Для большого канонического ансамбля (то есть для статистического ансамбля состояний системы с переменным числом частиц и равновесным химическим потенциалом) может быть определён большой термодинамический потенциал, связывающий свободную энергию с химическим потенциалом:

    ;

    Нетрудно проверить, что так называемая связанная энергия является термодинамическим потенциалом для системы, заданной с постоянными.

    Потенциалы и термодинамическое равновесие

    В состоянии равновесия зависимость термодинамических потенциалов от соответствующих переменных определяется каноническим уравнением состояния этой системы. Однако в состояниях, отличных от равновесного, эти соотношения теряют силу. Тем не менее, для неравновесных состояний термодинамические потенциалы также существуют.

    Таким образом, при фиксированных значениях своих переменных потенциал может принимать различные значения, одно из которых соответствует состоянию термодинамического равновесия.

    Можно показать, что в состоянии термодинамического равновесия соответствующее значение потенциала минимально. Поэтому равновесие является устойчивым.

    Нижеприведённая таблица показывает, минимуму какого потенциала соответствует состояние устойчивого равновесия системы с заданными фиксированными параметрами.

    Примечания

    1. Кричевский И. Р., Понятия и основы термодинамики, 1970, с. 226–227.
    2. Сычев В. В., Сложные термодинамические системы, 1970.
    3. Кубо Р., Термодинамика, 1970, с. 146.
    4. Мюнстер А., Химическая термодинамика, 1971, с. 85–89.
    5. Gibbs J. W., The Collected Works, Vol. 1, 1928.
    6. Гиббс Дж. В., Термодинамика. Статистическая механика, 1982.
    7. Duhem P., Le potentiel thermodynamique, 1886.
    8. Гухман А. А., Об основаниях термодинамики, 2010, с. 93.

    Литература

    • Duhem P. Le potentiel thermodynamique et ses applications à la mécanique chimique et à l"étude des phénomènes électriques. - Paris: A. Hermann, 1886. - XI + 247 с.
    • Gibbs J. Willard. The Collected Works. - N. Y. - London - Toronto: Longmans, Green and Co., 1928. - Т. 1. - XXVIII + 434 с.
    • Базаров И. П. Термодинамика. - М.: Высшая школа, 1991. 376 с.
    • Базаров И. П. Заблуждения и ошибки в термодинамике. Изд. 2-е испр. - М.: Едиториал УРСС, 2003. 120 с.
    • Гиббс Дж. В. Термодинамика. Статистическая механика. - М.: Наука, 1982. - 584 с. - (Классики науки).
    • Гухман А. А. Об основаниях термодинамики. - 2-е изд., испр. - М.: Изд-во ЛКИ, 2010. - 384 с. - ISBN 978-5-382-01105-9.
    • Зубарев Д.Н. Неравновесная статистическая термодинамика. М.: Наука, 1971. 416 с.
    • Квасников И. А. Термодинамика и статистическая физика. Теория равновесных систем, том. 1. - М.: Изд-во МГУ, 1991. (2-е изд., испр. и доп. М.: УРСС, 2002. 240 с.)
    • Кричевский И. Р. Понятия и основы термодинамики. - 2-е изд., пересмотр. и доп. - М.: Химия, 1970. - 440 с.
    • Кубо Р. Термодинамика. - М.: Мир, 1970. - 304 с.
    • Ландау, Л. Д., Лифшиц, Е. М. Статистическая физика. Часть 1. - Издание 3-е, дополненное. - М.: Наука, 1976. - 584 с. - («Теоретическая физика», том V).
    • Майер Дж., Гепперт-Майер М. Статистическая механика. М.: Мир, 1980.
    • Мюнстер А. Химическая термодинамика. - М.: Мир, 1971. - 296 с.
    • Сивухин Д. В. Общий курс физики. - М.: Наука, 1975. - Т. II. Термодинамика и молекулярная физика. - 519 с.
    • Сычев В. В. Сложные термодинамические системы. - 4-е изд., перераб. и доп.. - М: Энергоатомиздат, 1986. - 208 с.
    • Термодинамика. Основные понятия. Терминология. Буквенные обозначения величин. Сборник определений, вып. 103/ Комитет научно-технической терминологии АН СССР. М.: Наука, 1984

    термодинамические потенциалы, термодинамические потенциалы элементов, термодинамические потенциалын

    Термодинамическими потенциалами, или характеристическими функциями, называют термодинамические функции, которые содержат в себе всю термодинамическую информацию о системе. Наибольшее значение имеют четыре основных термодинамических потенциала:

    1) внутренняя энергия U (S ,V ),

    2) энтальпия H (S ,p ) = U + pV ,

    3) энергия Гельмгольца F (T ,V ) = U - TS ,

    4) энергия Гиббса G (T ,p ) = H - TS = F + pV .

    В скобках указаны термодинамические параметры, которые получили название естественных переменных для термодинамических потенциалов. Все эти потенциалы имеют размерность энергии и все они не имеют абсолютного значения, поскольку определены с точностью до постоянной, которая равна внутренней энергии при абсолютном нуле.

    Зависимость термодинамических потенциалов от их естественных переменных описывается основным уравнением термодинамики , которое объединяет первое и второе начала. Это уравнение можно записать в четырех эквивалентных формах:

    dU = TdS - pdV (5.1)

    dH = TdS + Vdp (5.2)

    dF = - pdV - SdT (5.3)

    dG = Vdp - SdT (5.4)

    Эти уравнения записаны в упрощенном виде - только для закрытых систем, в которых совершается только механическая работа.

    Зная любой из четырех потенциалов как функцию естественных переменных, можно с помощью основного уравнения термодинамики найти все другие термодинамические функции и параметры системы (см. пример 5-1).

    Другой важный смысл термодинамических потенциалов состоит в том, что они позволяют предсказывать направление термодинамических процессов. Так, например, если процесс происходит при постоянных температуре и давлении, то неравенство, выражающее второй закон термодинамики:

    эквивалентно неравенству dG p,T 0 (мы учли, что при постоянном давлении Q p = dH ), где знак равенства относится к обратимым процессам, а неравенства - к необратимым. Таким образом, при необратимых процессах, протекающих при постоянных температуре и давлении, энергия Гиббса всегда уменьшается. Минимум энергии Гиббса достигается при равновесии.

    Аналогично, любой термодинамический потенциал в необратимых процессах при постоянстве естественных переменных уменьшается и достигает минимума при равновесии:

    Потенциал

    Естественные
    переменные

    Условие само-произвольности

    Условия
    равновесия

    S = const, V = const

    dU = 0, d 2 U > 0

    S = const, p = const

    dH = 0, d 2 H > 0

    T = const, V = const

    dF = 0, d 2 F > 0

    T = const, p = const

    dG = 0, d 2 G > 0

    Наибольшее значение в конкретных термодинамических расчетах имеют два последние потенциала - энергия Гельмгольца F и энергия Гиббса G , т.к. их естественные переменные наиболее удобны для химии. Другое (устаревшее) название этих функций - изохорно-изотермический и изобарно-изотермический потенциалы. Они имеют дополнительный физико-химический смысл. Уменьшение энергии Гельмгольца в каком-либо процессе при T = const, V = const равно максимальной механической работе, которую может совершить система в этом процессе:

    F 1 - F 2 = A max (= A обр).

    Таким образом, энергия F равна той части внутренней энергии (U = F + TS ), которая может превратиться в работу.

    Аналогично, уменьшение энергии Гиббса в каком-либо процессе при T = const, p = const равно максимальной полезной (т.е., немеханической) работе, которую может совершить система в этом процессе:

    G 1 - G 2 = A пол.

    Зависимость энергии Гельмгольца (Гиббса) от объема (давления) вытекает из основного уравнения термодинамики (5.3), (5.4):

    . (5.5)

    Зависимость этих функций от температуры можно описать с помощью основного уравнения термодинамики:

    (5.6)

    или с помощью уравнения Гиббса-Гельмгольца:

    (5.7)

    Расчет изменения функций F и G в химических реакциях можно проводить разными способами. Рассмотрим два из них на примере энергии Гиббса.

    1) По определению, G = H - TS . Если продукты реакции и исходные вещества находятся при одинаковой температуре, то стандартное изменение энергии Гиббса в химической реакции равно:

    2) Аналогично тепловому эффекту реакции, изменение энергии Гиббса можно рассчитать, используя энергии Гиббса образования веществ:

    В термодинамических таблицах обычно приводят абсолютные энтропии и значения термодинамических функций образования соединений из простых веществ при температуре 298 К и давлении 1 бар (стандартное состояние). Для расчета r G и r F при других условиях используют соотношения (5.5) - (5.7).

    Все термодинамические потенциалы являются функциями состояния. Это свойство позволяет найти некоторые полезные соотношения между частными производными, которые называют соотношениями Максвелла .

    Рассмотрим выражение (5.1) для внутренней энергии. Т.к. dU - полный дифференциал, частные производные внутренней энергии по естественным переменным равны:

    Если продифференцировать первое тождество по объему, а второе - по энтропии, то получатся перекрестные вторые частные производные внутренней энергии, которые равны друг другу:

    (5.10)

    Три другие соотношения получаются при перекрестном дифференцировании уравнений (5.2) - (5.4).

    (5.11)

    (5.12)

    (5.13)

    ПРИМЕРЫ

    Пример 5-1. Внутренняя энергия некоторой системы известна как функция энтропии и объема, U (S ,V ). Найдите температуру и теплоемкость этой системы.

    Решение . Из основного уравнения термодинамики (5.1) следует, что температура - это частная производная внутренней энергии по энтропии:

    Изохорная теплоемкость определяет скорость изменения энтропии с температурой:

    Воспользовавшись свойствами частных производных, можно выразить производную энтропии по температуре через вторую производную внутренней энергии:

    .

    Пример 5-2. Используя основное уравнение термодинамики, найдите зависимость энтальпии от давления при постоянной температуре: а) для произвольной системы; б) для идеального газа.

    Решение . а) Если основное уравнение в форме (5.2) поделить на dp при постоянной температуре, получим:

    .

    Производную энтропии по давлению можно выразить с помощью соотношения Максвелла для энергии Гиббса (5.13):

    .

    б) Для идеального газа V (T ) = nRT / p . Подставляя эту функцию в последнее тождество, получим:

    .

    Энтальпия идеального газа не зависит от давления.

    Пример 5-3. Выразите производные и через другие термодинамические параметры.

    Решение . Основное уравнение термодинамики (5.1) можно переписать в виде:

    ,

    представив энтропию как функцию внутренней энергии и объема. Коэффициенты при dU и dV равны соответствующим частным производным:

    .

    Пример 5-4. Два моля гелия (идеальный газ, мольная теплоемкость C p = 5/2 R ) нагревают от 100 о С до 200 о С при p = 1 атм. Вычислите изменение энергии Гиббса в этом процессе, если известно значение энтропии гелия, = 131.7 Дж/(моль. К). Можно ли считать этот процесс самопроизвольным?

    Решение . Изменение энергии Гиббса при нагревании от 373 до 473 К можно найти, проинтегрировав частную производную по температуре (5.6):

    .

    Зависимость энтропии от температуры при постоянном давлении определяется изобарной темлоемкостью:

    Интегрирование этого выражения от 373 К до T дает:

    Подставляя это выражение в интеграл от энтропии, находим:

    Процесс нагревания не обязан быть самопроизвольным, т.к. уменьшение энергии Гиббса служит критерием самопроизвольного протекания процесса только при T = const и p = const.

    Ответ. G = -26850 Дж.

    Пример 5-5. Рассчитайте изменение энергии Гиббса в реакции

    CO + ЅO 2 = CO 2

    при температуре 500 K и парциальных давлениях 3 бар. Будет ли эта реакция самопроизвольной при данных условиях? Газы считать идеальными. Необходимые данные возьмите из справочника.

    Решение . Термодинамические данные при температуре 298 К и стандартном давлении 1 бар сведем в таблицу:

    Вещество

    Энтальпия образования
    , кДж/моль

    Энтропия
    , Дж/(моль. К)

    Теплоемкость
    , Дж/(моль. К)

    КДж/моль

    Дж/(моль. К)

    Дж/(моль. К)

    CO + ЅO 2 =
    = CO 2

    Примем, что C p = const. Изменения термодинамических функций в результате реакции рассчитаны как разность функций реагентов и продуктов:

    f = f (CO 2) - f (CO) - Ѕ f (O 2).

    Стандартный тепловой эффект реакции при 500 К можно рассчитать по уравнению Кирхгофа в интегральной форме (3.8):

    Стандартное изменение энтропии в реакции при 500 К можно рассчитать по формуле (4.9):

    Стандартное изменение энергии Гиббса при 500 К:

    Для расчета изменения энергии Гиббса при парциальных давлениях 3 атм необходимо проинтегрировать формулу (5.5) и использовать условие идеальности газов (V = n RT / p , n - изменение числа молей газов в реакции):

    Эта реакция может протекать самопроизвольно при данных условиях.

    Ответ . G = -242.5 кДж/моль.

    ЗАДАЧИ

    5-1. Выразите внутреннюю энергию как функцию переменных G , T , p .

    5-2. Используя основное уравнение термодинамики, найдите зависимость внутренней энергии от объема при постоянной температуре: а) для произвольной системы; б) для идеального газа.

    5-3. Известно, что внутренняя энергия некоторого вещества не зависит от его объема. Как зависит давление вещества от температуры? Ответ обоснуйте.

    5-4. Выразите производные и через другие термодинамические параметры и функции.

    5-5. Напишите выражение для бесконечно малого изменения энтропии как функции внутренней энергии и объема. Найдите частные производные энтропии по этим переменным и составьте соответствующее уравнение Максвелла.

    5-6. Для некоторого вещества известно уравнение состояния p (V , T ). Как изменяется теплоемкость C v с изменением объема? Решите задачу: а) в общем виде; б) для какого-либо конкретного уравнения состояния (кроме идеального газа).

    5-7. Докажите тождество: .

    5-8. Энергия Гельмгольца одного моля некоторого вещества записывается следующим образом:

    F = a + T (b - c - b ln T - d ln V ),

    где a , b , c , d - константы. Найдите давление, энтропию и теплоемкость C V этого тела. Дайте физическую интерпретацию константам a , b , d .

    5-9. Нарисуйте график зависимости энергии Гиббса индивидуального вещества от температуры в интервале от 0 до T > T кип.

    5-10. Для некоторой системы известна энергия Гиббса:

    G(T ,p ) = aT (1-lnT ) + RT lnp - TS 0 + U 0 ,

    где a , R , S 0 , U 0 - постоянные. Найдите уравнение состояния p (V ,T ) и зависимость U (V ,T ) для этой системы.

    5-11. Зависимость мольной энергии Гельмгольца некоторой системы от температуры и объема имеет вид:

    где a , b , c , d - константы. Выведите уравнение состояния p (V ,T ) для этой системы. Найдите зависимость внутренней энергии от объема и температуры U (V ,T ). Каков физический смысл постоянных a , b , c ?

    5-12. Найдите зависимость мольной внутренней энергии от объема для термодинамической системы, которая описывается уравнением состояния (для одного моля)

    ,

    где B (T ) - известная функция температуры.

    5-13. Для некоторого вещества зависимость теплоемкости от температуры имеет вид: C V = aT 3 при температуре 0 - 10 К. Найдите зависимость энергии Гельмгольца, энтропии и внутренней энергии от температуры в этом диапазоне.

    5-14. Для некоторого вещества зависимость внутренней энергии от температуры имеет вид: U = aT 4 + U 0 при температуре 0 - 10 К. Найдите зависимость энергии Гельмгольца, энтропии и теплоемкости C V от температуры в этом диапазоне.

    5-15. Выведите соотношение между теплоемкостями:

    .

    5-16. Исходя из тождества , докажите тождество:

    .

    5-17. Один моль газа Ван-дер-Ваальса изотермически расширяется от объема V 1 до объема V 2 при температуре T . Найдите U , H , S , F и G для этого процесса.

    Поделитесь с друзьями или сохраните для себя:

    Загрузка...