Термодинамические потенциалы. Потенциалы термодинамические Системы с переменным числом частиц. Большой термодинамический потенциал

Термодинами́ческие потенциа́лы (термодинамические функции ) - характеристические функции в термодинамике , убыль которых в равновесных процессах, протекающих при постоянстве значений соответствующих независимых параметров, равна полезной внешней работе.

Поскольку в изотермическом процессе количество теплоты, полученное системой, равно , то убыль свободной энергии в квазистатическом изотермическом процессе равна работе, совершённой системой над внешними телами.

Потенциал Гиббса

Также называемый энергией Гиббса , термодинамическим потенциалом , свободной энергией Гиббса и даже просто свободной энергией (что может привести к смешиванию потенциала Гиббса со свободной энергией Гельмгольца):

.

Термодинамические потенциалы и максимальная работа

Внутренняя энергия представляет собой полную энергию системы. Однако второе начало термодинамики запрещает превратить всю внутреннюю энергию в работу.

Можно показать, что максимальная полная работа (как над средой, так и над внешними телами), которая может быть получена от системы в изотермическом процессе , равна убыли свободной энергии Гельмгольца в этом процессе:

,

где - свободная энергия Гельмгольца.

В этом смысле представляет собой свободную энергию, допускающую преобразование в работу. Оставшаяся часть внутренней энергии может быть названа связанной .

В некоторых приложениях приходится различать полную и полезную работу. Последняя представляет собой работу системы над внешними телами, исключая среду, в которую она погружена. Максимальная полезная работа системы равна

где - энергия Гиббса.

В этом смысле энергия Гиббса также является свободной .

Каноническое уравнение состояния

Задание термодинамического потенциала некоторой системы в определенной форме эквивалентно заданию уравнения состояния этой системы.

Соответствующие дифференциалы термодинамических потенциалов:

  • для внутренней энергии
,
  • для энтальпии
,
  • для свободной энергии Гельмгольца
,
  • для потенциала Гиббса
.

Эти выражения математически можно рассматривать как полные дифференциалы функций двух соответствующих независимых переменных. Поэтому естественно рассматривать термодинамические потенциалы как функции:

, , , .

Задание любой из этих четырёх зависимостей - то есть конкретизация вида функций , , , - позволяет получить всю информацию о свойствах системы. Так, например, если нам задана внутренняя энергия как функция энтропии и объёма , оставшиеся параметры могут быть получены дифференцированием:

Здесь индексы и означают постоянство второй переменной, от которой зависит функция. Эти равенства становятся очевидными, если учесть, что .

Задание одного из термодинамических потенциалов как функции соответствующих переменных, как записано выше, представляет собой каноническое уравнение состояния системы. Как и другие уравнения состояния, оно справедливо лишь для состояний термодинамического равновесия . В неравновесных состояниях эти зависимости могут не выполняться.

Метод термодинамических потенциалов. Соотношения Максвелла

Метод термодинамических потенциалов помогает преобразовывать выражения, в которые входят основные термодинамические переменные и тем самым выражать такие «труднонаблюдаемые» величины, как количество теплоты, энтропию, внутреннюю энергию через измеряемые величины - температуру, давление и объём и их производные.

Рассмотрим опять выражение для полного дифференциала внутренней энергии:

.

Известно, что если смешанные производные существуют и непрерывны, то они не зависят от порядка дифференцирования, то есть

.

Но и , поэтому

.

Рассматривая выражения для других дифференциалов, получаем:

, , .

Эти соотношения называются соотношениями Максвелла . Заметим, что они не выполняются в случае разрывности смешанных производных, что имеет место при фазовых переходах 1-го и 2-го рода.

Системы с переменным числом частиц. Большой термодинамический потенциал

Химический потенциал () компонента определяется как энергия, которую необходимо затратить для того, чтобы добавить в систему бесконечно малое молярное количество этого компонента. Тогда выражения для дифференциалов термодинамических потенциалов могут быть записаны так:

, , , .

Поскольку термодинамические потенциалы должны быть аддитивными функциями числа частиц в системе, канонические уравнения состояния принимают такой вид (с учётом того, что S и V - аддитивные величины, а T и P - нет):

, , , .

И, поскольку , из последнего выражения следует, что

,

то есть химический потенциал - это удельный потенциал Гиббса (на одну частицу).

Для большого канонического ансамбля (то есть для статистического ансамбля состояний системы с переменным числом частиц и равновесным химическим потенциалом) может быть определён большой термодинамический потенциал , связывающий свободную энергию с химическим потенциалом:

;

Нетрудно проверить, что так называемая связанная энергия является термодинамическим потенциалом для системы, заданной с постоянными .

Термодинамические потенциалы, Щука, с.36

Термодинамические потенциалы, Щука, с.36

Для изолированных систем это соотношение равноценно классиче­ской формулировке, что энтропия никогда не может уменьшаться. Та­кой вывод сделал Нобелевский лауреат И. Р. Пригожий, анализируя открытые системы. Он же выдвинул принцип, согласно которому не­равновесность может служить источником упорядоченности .

Третье начало термодинамики описывает состояние системы вблизи абсолютного нуля. В соответствии с третьим началом термоди­намики уста­навливает начало отсчета энтропии и фиксация ее для любой системы. При Т  0 обращаются в нуль коэффициент теплово­го расширения, теплоемкость любого процесса. Это позволяет сделать вывод, что при абсолютном нуле температуры любые изменения со­стояния происходят без изменения энтропии. Это утверждение назы­вают теоремой Нобелевского лауреата В. Г. Нернста, или третьим на­чалом термодинамики.

Третье начало термодинамики гласит :

абсолютный ноль принципиально недостижим потому, что при T = 0 и S = 0.

Если бы существовало тело с температурой, равной нулю, то можно было бы построить вечный двигатель второго рода, что противоречит второму началу термо­динамики.

Модификация третьего начала тер­модинамики для расчета химического равновесия в системе сформули­рована лауреатом Нобелевской премии М. Планком таким образом.

Постулат Планка : при абсолютном нуле температуры энтро­пия принимает значение S 0 , не зависящее от давления, агрегатного состояния, а также других характеристик вещества. Эту величину можно положить равной нулю, или S 0 = 0.

В соответствии со статистической теорией величина энтропии вы­ражается как S = ln, где  – постоянная Больцмана,  – стати­стический вес, или термоди­на­мическая вероятность макросостояний. Его также называют -потенциалом. Под статистическим весом бу­дем понимать число микросостояний, при помощи которых реализу­ется данное макросостояние. Энтропия идеального кристалла при T = 0 К, при условии  = 1, или в том случае, когда макросостояние может быть осуществ­лено единственным микросостоянием, равна ну­лю. Во всех остальных случаях величина энтропии при абсолютном нуле должна быть больше нуля.

3.3. Термодинамические потенциалы

Термодинамические потенциалы представляют собой функции определенных наборов термодинамических параметров, позволяю­щие находить все термодина­мические характеристики системы как функции этих же параметров .

Термодинамические потенциалы полностью определяют термо­динамическое состояние системы, а путем дифференцирования и интегрирования можно вычис­лить любые параметры системы.

К основным термодинамическим потенциалам относятся следую­щие функции.

1. Внутренняя энергия U , являющаяся функцией независимых переменных:

    энтропии S ,

    объема V ,

    числа частиц N ,

    обобщенных ко­ординат x i

или U = U (S , V , N, x i ).

2. Свободная энергия Гельмгольца F является функцией темпе­ратуры T , объема V , числа частиц N , обобщенной координаты x i так, что F = F (T , V , N , x t ).

3. Термодинамический потенциал Гиббса G = G (T , p , N , x i ).

4. Энтальпия H = H (S , P, N , x i ).

5. Термодинамический потенциал , для которого независимыми перемен­ны­ми являются температура Т, объем V , химический потен­циал x ,  =  (T , V , N , x i ).

Существуют классические соотношения между термодинамиче­скими потенциалами:

U = F + TS = H PV ,

F = U TS = H TS PV ,

H = U + PV = F + TS + PV ,

G = U TS + PV = F + PV = H TS ,

 = U TS – V = F – N = H TS – N , (3.12)

U = G + TS PV =  + TS + N ,

F = G PV =  + N ,

H = G + TS =  + TS + N ,

G =  + PV + N ,

 = G PV – N .

Существование термодинамических потенциалов являются след­ствием первого и второго начал термодинамики и показывают, что внутренняя энергия системы U зависит только от состояния систе­мы. Внутренняя энергия системы зависит от полного набора мак­роскопических параметров, но не зависит от способа достижения этого состояния. Запишем внутреннюю энергию в дифференциаль­ном виде

dU = TdS PdV X i dx i + dN ,

T = (U /S ) V, N, x = const ,

P = –(U /V ) S, N, x = const ,

 = (U /N ) S, N, x = const .

Аналогично можно записать

dF = – SdT PdV – X t dx t + dN,

dH = TdS + VdP X t dx t + dN,

dG = – SdT + VdP – X i dx i + dN,

d = – SdT PdV – X t dx t NdN,

S = – (F /T ) V ; P = –(F /V ) T ; T = (U /S ) V ; V = (U /P ) T ;

S = – (G /T ) P ; V = (G /P ) S ; T = (H /S ;); P = – (U /V ) S

S = – (F /T ); N = (F /);  = (F /N ); X = – (U /x ).

Эти уравнения имеют место для равновесных процессов. Обратим внимание на термодинамический изобарно-изотермиче­ский потенциал G , называемый свобод­ной энергией Гиббса ,

G = U TS + PV = H TS , (3.13)

и изохорно-изотермический потенциал

F = U TS, (3.14)

который получил название свободная энергия Гельмгольца.

В химических реакциях, протекающих при постоянном давлении и температуре,

G = U T S + P V = N , (3.15)

где  – химический потенциал.

Под химическим потенциалом некоторого компонента системы i будем понимать частную производную от любого из термодина­мических потенциалов по количеству этого компонента при посто­янных значениях остальных термодинамических переменных.

Химический потенциал можно определить и как величину, опре­деляющую изменение энергии системы при добавлении одной час­тицы вещества, например,

i = (U /N ) S , V = cost , или G =  i N i .

Из последнего уравнения следует, что  = G / N i , то есть  пред­ставляет собой энергию Гиббса, отнесенную к одной частице. Хими­ческий потенциал измеряют в Дж/моль.

Омега-потенциал  выражается через большую статистическую сумму Z как

 = – T lnZ , (3.16)

Где [суммирование по N и k (N )]:

Z =   ехр[(N E k (N ))/T ].

Компонентов n i , хим. потенциалов компонентов m , и др.), применяемые гл. обр. для описания термодинамического равновесия . Каждому термодинамическому потенциалу соответствует набор параметров состояния , наз. естественными переменными.

Важнейшие термодинамические потенциалы: внутренняя энергия U (естественные переменные S, V, n i); энтальпия Н= U - (- pV) (естественные переменные S, p, n i); энергия Гельмгольца (свободная энергия Гельмгольца , ф-ция Гельмгольца) F = = U - TS (естественные переменные V, Т, n i); энергия Гиббса (своб. энергия Гиббса , ф-ция Гиббса) G=U - - TS - (- pV) (естественные переменные p, Т, n i); большой термодинамич. потенциал(естест венные переменные V, Т, m i).

Т ермодинамические потенциалы могут быть представлены общей ф-лой

где L k - интенсивные параметры , не зависящие от массы системы (таковы Т, p, m i), X k -экстенсивные параметры, пропорциональные массе системы (V, S, n i). Индекс l = 0 для внутренней энергии U, 1-для H и F, 2-для G и W . Термодинамические потенциалы являются ф-циями состояния термодинамической системы , т.е. их изменение в любом процессе перехода между двумя состояниями определяется лишь начальным и конечным состояниями и не зависит от пути перехода. Полные дифференциалы термодинамических потенциалов имеют вид:



Ур-ние (2) наз. фундаментальным ур-нием Гиббса в энергетич. выражении. Все термодинамические потенциалы имеют размерность энергии.

Условия равновесия термодинамич. системы формулируются как равенство нулю полных дифференциалов термодинамических потенциалов при постоянстве соответствующих естественных переменных:


Термодинамич. устойчивость системы выражается неравенствами:



Убыль термодинамических потенциалов в равновесном процессе при постоянстве естественных переменных равна максимальной полезной работе процесса А:

При этом работа А производится против любой обобщенной силы L k , действующей на систему, кроме внеш. давления (см. Максимальная работа реакции).

Т ермодинамические потенциалы, взятые как ф-ции своих естественных переменных, являются характеристическими ф-циями системы. Это означает, что любое термодинамич. св-во (сжимаемость , теплоемкость и т. п.) м. б. выражено соотношением, включающим только данный термодинамический потенциал, его естественные переменные и производные термодинамических потенциалов разных порядков по естественным переменным. В частности, с помощью термодинамических потенциалов можно получить уравнения состояния системы.

Важными св-вами обладают производные термодинамических потенциалов. Первые частные производные по естественным экстенсивным переменным равны интенсивным переменным, напр.:

[в общем виде: (9 Y l /9 Х i) = L i ]. И наоборот, производные по естественным интенсивным переменным равны экстенсивным переменным, напр.:

[в общем виде: (9 Y l /9 L i) = X i ]. Вторые частные производные по естественным переменным определяют мех. и тер-мич. св-ва системы, напр.:


Т.к. дифференциалы термодинамических потенциалов являются полными, перекрестные вторые частные производные термодинамических потенциалов равны, напр. для G(T, p, n i):


Соотношения этого типа называются соотношениями Максвелла.

Т ермодинамические потенциалы можно представить и как ф-ции переменных, отличных от естественных, напр. G(T, V, n i), однако в этом случае св-ва термодинамических потенциалов как характеристич. ф-ции будут потеряны. Помимо термодинамических потенциалов характеристич. ф-циями являются энтропия S (естественные переменные U, V, n i), ф-ция Массье Ф 1 = (естественные переменные 1/Т, V, n i), ф-ция Планка (естественные переменные 1/Т, p/Т, n i).

Т ермодинамические потенциалы связаны между собой ур-ниями Гиббса-Гельмгольца. Напр., для H и G

В общем виде:

Т ермодинамические потенциалы являются однородными ф-циями первой степени своих естественных экстенсивных переменных. Напр., с ростом энтропии S или числа молей n i пропорционально увеличивается и энтальпия Н. Согласно теореме Эйлера, однородность термодинамических потенциалов приводит к соотношениям типа:

В хим. термодинамике , помимо термодинамических потенциалов, записанных для системы в целом, широко используют среднемолярные (удельные) величины (напр.,,

Все расчеты в термодинамике основываются на использовании функций состояния, называемых термодинамическими потенциалами. Каждому набору независимых параметров соответствует свой термодинамический потенциал. Изменения потенциалов, происходящие в ходе каких-либо процессов, определяют либо совершаемую систолой работу, либо получаемое системой тепло.

При рассмотрении термодинамических потенциалов мы будем пользоваться соотношением (103.22), представив его в виде

Знак равенства относится к обратимым, знак неравенства - к нет обратимым процессам.

Термодинамические потенциалы являются функциями состояния. Поэтому приращение любого из потенциалов равно полному дифференциалу функции, которой он выражается. Полный дифференциал функции переменных и у определяется выражением

Поэтому, если в ходе преобразований мы получим для приращения некоторой величины выражение вида

можно утверждать, что эта величина является функцией параметров , причем функции представляют собой частные производные функции

Внутренняя энергия. С одним из термодинамических потенциалов мы уже хорошо знакомы. Это - внутренняя энергия системы. Выражение первого начала для обратимого процесса можно представить в виде

(109.4)

Сравнение с (109.2) показывает, что в качестве так называемых, естественных переменных для потенциала V выступают переменные S и V. Из (109.3) следует, что

Из соотношения следует, что в случае, - когда тело не обменивается теплом с внешней средой, совершаемая им работа равна

или в интегральной форме:

Таким образом, при отсутствии теплообмена с внешней средой работа равна убыли внутренней энергии тела.

При, постоянном объеме

Следовательно, - теплоемкость при постоянном объеме равна

(109.8)

Свободная знергия. Согласно (109.4) работа производимая теплом при обратимом изотермическом процессе, может быть представлена в виде

Функцию состояния

(109.10)

называются свободной энергией тела.

В соответствии с формулам» (109.9) и (109.10) при обратимом изотермическом процессе работа равна убыли свободной энергии тела:

Сравнение с формулой (109.6) показывает, что при изотермических процессах свободная энергия играет такую же роль, как внутренняя энергия при адиабатических процессах.

Заметам, что формула (109.6) справедлива как при обратимых, так и при необратимых процессах. Формула же (109.12) справедлива только для обратимых процессов. При необратимых процессах (см. ). Подставив это неравенство в соотношение легко получить, что при необратимых изотермических процессах

Следовательно, убыль свободной энергии определяет верхний предел количества работы, которую может совершить система при изотермическом процессе.

Возьмем дифференциал от функции (109.10). Приняв во внимание (109.4) получим:

Из сравнения с (109.2) заключаем, что естественными переменными для свободной энергии являются Т и V. В соответствии с (109.3)

Заменим: в (109.1) dQ через и разделим получившееся соотношение на ( - время). В результате получим, что

Если температура и объем остаются постоянными, то соотношение (109.16) может быть преобразовано к виду

Из этой формулы следует, что необратимый процесс, протекающий при постоянных температуре и объема, сопровождается уменьшением свободной энергии тела. По достижении равновесия F перестает меняться со временем. Таким образом; при неизменных Т и V равновесным является состояние, для которого свободная энергия минимальна.

Энтальпия. Если процесс «происходит при постоянном давлении, то количество получаемого телом тепла можно представить следующим образом:

Функцию состояния

называют энтальпией или тепловой функцией.

Из (109.18) и (109.19) вытекает, что количество тепла, получаемого телом в ходе изобатического процесса, равно

или в интегральной форме

Следовательно, в случае, когда давление остается постоянным, количество получаемого телом тепла равно приращению энтальпии. Дифференцирование выражения (109.19) с учетом (109.4) дает

Отсюда заключаем. энтальпия есть термодинамический потенциал в переменных Его частные производные равны

Физическая величина, элементарное изменение которой при переходе системы из одного состояния в другое равно полученному или отданному количеству теплоты, деленному на температуру,при которой произошел этот переход, называется энтропией.

Для бесконечно малого изменения состояния системы:

При переходе системы из одного состояния вдругое, изменение энтропии можно рассчитать так:

На основании первого начала термодинамики можно получить

dS=dQ/T=C V dT/T+RdV/V, а

При изотермическом процессе T=const, т.е. T 1 =T 2:

DS=R×ln(V 2 /V 1).

При изобарическом процессе p=const, т.е. V 2 /V 1 =T 2 /T 1:

DS=(C V +R)×ln(T 2 /T 1)=C p ×ln(T 2 /T 1)=C p ×ln(V 2 /V 1).

При изохорическом процессе V=const, т.е. V 1 =V 2:

DS=C V ×ln(T 2 /T 1).

При адиабатическом процессе dQ=0, т.е. DS=0:

S 1 =S 2 =const.

Изменения энтропии системы, совершающей цикл Карно:

DS=-(Q 1 /T 1 +Q 2 /T 2).

Энтропия замкнутой системы, совершающей обратимый цикл Карно не изменяется:

dS=0 или S=const.

Если системой совершается необратимый цикл, то dS>0.

Таким образом, энтропия замкнутой (изолированной) системы при любых, происходящих в ней процессах не может убывать:

где знак равенства справедлив для обратимых процессов, а знак неравенства – для необратимых.

Второе начало термодинамики: "В изолированной системе возможны только такие процессы, при которых энтропия системы возрастает". То есть

dS³0 или dS³dQ/T.

Второе начало термодинамики определяет направление термодинамических процессов и указывает на физический смысл энтропии: энтропия – мера рассеяния энергии, т.е. характеризует ту часть энергии, которую нельзя превратить в работу.

Термодинамическими потенциалами называют определенные функции объема V, давления p, температуры T, энтропии S, числа частиц системы N и других макроскопических параметров x, характеризующих состояние термодинамической системы. К ним относятся: внутренняя энергия U=U(S,V,N,x), энтальпия H=H(S,p,N,x); свободная энергия – F=F(V,T,N,x), энергия Гиббса G=G(p,T,N,x).

Изменение внутренней энергии системы в каком-нибудь процессе определяют как алгебраическую сумму количества теплоты Q, которыми система обменивается в ходе процесса с окружающей средой, и работы А, совершенной системой или произведенной над ней. Это отражает первое начало термодинамики:

Изменение U определяется лишь значениями внутренней энергии в начальном и конечном состояниях:

Для любого замкнутого процесса, возвращающего систему в первоначальное состояние, изменение внутренней энергии равно нулю (U 1 =U 2 ; DU=0; Q=A).

Изменение внутренней энергии системы в адиабатическом процессе (при Q=0) равно работе, производимой над системой или произведенной системой DU=A.

В случае простейшей физической системы с малым межмолекулярным взаимодействием (идеального газа) изменение внутренней энергии сводится к изменению кинетической энергии молекул:

где m – масса газа;

c V – удельная теплоемкость при постоянном объеме.

Энтальпия (теплосодержание, тепловая функция Гиббса) – характеризует состояние макроскопической системы в термодинамическом равновесии при выборе в качестве основных независимых переменных энтропии S и давления p – H(S,p,N,x).

Энтальпия аддитивная функция (т.е. энтальпия всей системы равна сумме энтальпий составляющих ее частей). С внутренней энергией U системы энтальпия связана соотношением:

где V – объем системы.

Полный дифференциал энтальпии (при неизменных N и x) имеет вид:

Из этой формулы можно определить температуру T и объем V системы:

T=(dH/dS), V=(dH/dp).

При постоянном давлении теплоемкость системы

Эти свойства энтальпии при постоянном давлении аналогичны свойствам внутренней энергии при постоянном объеме:

T=(dU/dS), p=-(dU/dV), c V =(dU/dT).

Свободная энергия – одно из названий изохорно-изотермического термодинамического потенциала или Гельмгольца энергии. Она определяетсякак разность между внутренней энергии термодинамической системы (U) и произведением ее энтропии (S) на температуру (T):

где TS – связанная энергия.

Энергия Гиббса – изобарно-изотермический потенциал, свободная энтальпия, характеристическая функция термодинамической системы при независимых параметрах p, T и N – G. Определяется через энтальпию H, энтропию S и температуру T равенством

Со свободной энергией – энергией Гельмгольца, энергия Гиббса связана соотношением:

Энергия Гиббса пропорциональна числу частиц N, отнесенная к одной частице, называется химическим потенциалом.

Совершаемая термодинамической системой в каком-либо процессе работа определяется убылью термодинамического потенциала, отвечающего условиям процесса. Так, при постоянстве числа частиц (N=const) в условиях теплоизоляции (адиабатический процесс, S=const) элементарная работа dA равна убыли внутренней энергии:

При изотермическом процессе (T=const)

В этомпроцессе работа совершается не только за счет внутренней энергии, но и за счет поступающей в систему теплоты.

Для систем, в которых возможен обмен веществом сокружающей средой (изменение N), возможныпроцессы при постоянных p и T. В этом случае элементарная работа dA всех термодинамических сил, кроме сил давления, равна убыли термодинамического потенциала Гиббса (G), т.е.

Согласно теореме Нернста изменение энтропии (DS) при любых обратимых изотермических процессах, совершаемых между двумя равновесными состояниями при температурах, приближающихся к абсолютному нулю, стремится к нулю

Другая эквивалентная формулировка теоремы Нернста: "При помощи последовательности термодинамических процессов нельзя достигнуть температуры, равной абсолютному нулю".

Поделитесь с друзьями или сохраните для себя:

Загрузка...