Вычисление объемов тел вращения с помощью определенного интеграла. Объём тела, полученного вращением арки циклоиды Площадь плоской фигуры параметрически

Когда мы выясняли геометрический смысл определенного интеграла, у нас получилась формула, с помощью которой можно найти площадь криволинейной трапеции, ограниченной осью абсцисс, прямыми x = a , x = b , а также непрерывной (неотрицательной или неположительной) функцией y = f (x) . Иногда удобнее задавать функцию, ограничивающую фигуру, в параметрическом виде, т.е. выражать функциональную зависимость через параметр t . В рамках данного материала мы покажем, как можно найти площадь фигуры, если она ограничена параметрически заданной кривой.

После объяснения теории и выведения формулы мы разберем несколько характерных примеров на нахождение площади таких фигур.

Основная формула для вычисления

Допустим, что у нас имеется криволинейная трапеция, границами которой являются прямые x = a , x = b , ось O x и параметрически заданная кривая x = φ (t) y = ψ (t) , а функции x = φ (t) и y = ψ (t) являются непрерывными на интервале α ; β , α < β , x = φ (t) будет непрерывно возрастать на нем и φ (α) = a , φ (β) = b .

Определение 1

Чтобы вычислить площадь трапеции при таких условиях, нужно использовать формулу S (G) = ∫ α β ψ (t) · φ " (t) d t .

Мы вывели ее из формулы площади криволинейной трапеции S (G) = ∫ a b f (x) d x методом подстановки x = φ (t) y = ψ (t) :

S (G) = ∫ a b f (x) d x = ∫ α β ψ (t) d (φ (t)) = ∫ α β ψ (t) · φ " (t) d t

Определение 2

Учитывая монотонное убывание функции x = φ (t) на интервале β ; α , β < α , нужная формула принимает вид S (G) = - ∫ β α ψ (t) · φ " (t) d t .

Если функция x = φ (t) не относится к основным элементарным, то нам понадобится вспомнить основные правила возрастания и убывания функции на интервале, чтобы определить, будет ли она возрастающей или убывающей.

В этом пункте мы разберем несколько задач на применение формулы, выведенной выше.

Пример 1

Условие : найдите площадь фигуры, которую образует линия, заданная уравнениями вида x = 2 cos t y = 3 sin t .

Решение

У нас есть параметрически заданная линия. Графически ее можно отобразить в виде эллипса с двумя полуосями 2 и 3 . См на иллюстрацию:

Попробуем найти площадь 1 4 полученной фигуры, которая занимает первый квадрант. Область находится в интервале x ∈ a ; b = 0 ; 2 . Далее умножим полученное значение на 4 и найдем площадь целой фигуры.

Вот ход наших вычислений:

x = φ (t) = 2 cos t y = ψ (t) = 3 sin t φ α = a ⇔ 2 cos α = 0 ⇔ α = π 2 + πk , k ∈ Z , φ β = b ⇔ 2 cos β = 2 ⇔ β = 2 πk , k ∈ Z

При k , равном 0 , мы получим интервал β ; α = 0 ; π 2 . Функция x = φ (t) = 2 cos t на нем будет монотонно убывать (подробнее см. статью об основных элементарных функциях и их свойствах). Значит, можно применить формулу вычисления площади и найти определенный интеграл, используя формулу Ньютона-Лейбница:

- ∫ 0 π 2 3 sin t · 2 cos t " d t = 6 ∫ 0 π 2 sin 2 t d t = 3 ∫ 0 π 2 (1 - cos (2 t) d t = = 3 · t - sin (2 t) 2 0 π 2 = 3 · π 2 - sin 2 · π 2 2 - 0 - sin 2 · 0 2 = 3 π 2

Значит, площадь фигуры, заданной исходной кривой, будет равна S (G) = 4 · 3 π 2 = 6 π .

Ответ: S (G) = 6 π

Уточним, что при решении задачи выше можно было взять не только четверть эллипса, но и его половину – верхнюю или нижнюю. Одна половина будет расположена на интервале x ∈ a ; b = - 2 ; 2 . В этом случае у нас бы получилось:

φ (α) = a ⇔ 2 cos α = - 2 ⇔ α = π + π k , k ∈ Z , φ (β) = b ⇔ 2 cos β = 2 ⇔ β = 2 π k , k ∈ Z

Таким образом, при k равном 0 , мы получили β ; α = 0 ; π . Функция x = φ (t) = 2 cos t на этом интервале будет монотонно убывать.

После этого вычисляем площадь половины эллипса:

- ∫ 0 π 3 sin t · 2 cos t " d t = 6 ∫ 0 π sin 2 t d t = 3 ∫ 0 π (1 - cos (2 t) d t = = 3 · t - sin (2 t) 2 0 π = 3 · π - sin 2 · π 2 - 0 - sin 2 · 0 2 = 3 π

Важно отметить, что можно взять только верхнюю или нижнюю часть, а правую или левую нельзя.

Можно составить параметрическое уравнение данного эллипса, центр которого будет расположен в начале координат. Оно будет иметь вид x = a · cos t y = b · sin t . Действуя так же, как и в примере выше, получим формулу для вычисления площади эллипса S э л и п с а = πab .

Задать окружность, центр которой расположен в начале координат, можно с помощью уравнения x = R · cos t y = R · sin t , где t является параметром, а R – радиусом данной окружности. Если мы сразу воспользуемся формулой площади эллипса, то то у нас получится формула, с помощью которой можно вычислить площадь круга с радиусом R: S к р у г а = πR 2 .

Разберем еще одну задачу.

Пример 2

Условие: найдите, чему будет равна площадь фигуры, которая ограничена параметрически заданной кривой x = 3 cos 3 t y = 2 sin 3 t .

Решение

Сразу уточним, что данная кривая имеет вид вытянутой астроиды. Обычно астроида выражается с помощью уравнения вида x = a · cos 3 t y = a · sin 3 t .

Теперь разберем подробно, как построить такую кривую. Выполним построение по отдельным точкам. Это самый распространенный метод, который применим для большинства задач. Более сложные примеры требуют проведения дифференциального исчисления, чтобы выявить параметрически заданную функцию.

У нас x = φ (t) = 3 cos 3 t , y = ψ (t) = 2 sin 3 t .

Данные функции являются определенными для всех действительных значений t . Для sin и cos известно, что они являются периодическими и их период составляет 2 пи. Вычислив значения функций x = φ (t) = 3 cos 3 t , y = ψ (t) = 2 sin 3 t для некоторых t = t 0 ∈ 0 ; 2 π π 8 , π 4 , 3 π 8 , π 2 , . . . , 15 π 8 , получим точки x 0 ; y 0 = (φ (t 0) ; ψ (t 0)) .

Составим таблицу итоговых значений:

t 0 0 π 8 π 4 3 π 8 π 2 5 π 8 3 π 4 7 π 8 π
x 0 = φ (t 0) 3 2 . 36 1 . 06 0 . 16 0 - 0 . 16 - 1 . 06 - 2 . 36 - 3
y 0 = ψ (t 0) 0 0 . 11 0 . 70 1 . 57 2 1 . 57 0 . 70 0 . 11 0
t 0 9 π 8 5 π 4 11 π 8 3 π 2 13 π 8 7 π 4 15 π 8 2 π
x 0 = φ (t 0) - 2 . 36 - 1 . 06 - 0 . 16 0 0 . 16 1 . 06 2 . 36 3
y 0 = ψ (t 0) - 0 . 11 - 0 . 70 - 1 . 57 - 2 - 1 . 57 - 0 . 70 - 0 . 11 0

После этого отметим нужные точки на плоскости и соединим их одной линией.

Теперь нам надо найти площадь той части фигуры, что находится в первой координатной четверти. Для нее x ∈ a ; b = 0 ; 3:

φ (α) = a ⇔ 3 cos 3 t = 0 ⇔ α = π 2 + πk , k ∈ Z , φ (β) = b ⇔ 3 cos 3 t = 3 ⇔ β = 2 πk , k ∈ Z

Если k равен 0 , то у нас получится интервал β ; α = 0 ; π 2 , и функция x = φ (t) = 3 cos 3 t на нем будет монотонно убывать. Теперь берем формулу площади и считаем:

- ∫ 0 π 2 2 sin 3 t · 3 cos 3 t " d t = 18 ∫ 0 π 2 sin 4 t · cos 2 t d t = = 18 ∫ 0 π 2 sin 4 t · (1 - sin 2 t) d t = 18 ∫ 0 π 2 sin 4 t d t - ∫ 0 π 2 sin 6 t d t

У нас получились определенные интегралы, которые можно вычислить с помощью формулы Ньютона-Лейбница. Первообразные для этой формулы можно найти, используя рекуррентную формулу J n (x) = - cos x · sin n - 1 (x) n + n - 1 n J n - 2 (x) , где J n (x) = ∫ sin n x d x .

∫ sin 4 t d t = - cos t · sin 3 t 4 + 3 4 ∫ sin 2 t d t = = - cos t · sin 3 t 4 + 3 4 - cos t · sin t 2 + 1 2 ∫ sin 0 t d t = = - cos t · sin 3 t 4 - 3 cos t · sin t 8 + 3 8 t + C ⇒ ∫ 0 π 2 sin 4 t d t = - cos t · sin 3 t 4 - 3 cos t · sin t 8 + 3 8 t 0 π 2 = 3 π 16 ∫ sin 6 t d t = - cos t · sin 5 t 6 + 5 6 ∫ sin 4 t d t ⇒ ∫ 0 π 2 sin 6 t d t = - cos t · sin 5 t 6 0 π 2 + 5 6 ∫ 0 π 2 sin 4 t d t = 5 6 · 3 π 16 = 15 π 96

Мы вычислили площадь четверти фигуры. Она равна 18 ∫ 0 π 2 sin 4 t d t - ∫ 0 π 2 sin 6 t d t = 18 3 π 16 - 15 π 96 = 9 π 16 .

Если мы умножим это значение на 4 , получим площадь всей фигуры – 9 π 4 .

Точно таким же образом мы можем доказать, что площадь астроиды, заданной уравнениями x = a · cos 3 t y = a · sin 3 t , можно найти по формуле S а с т р о и д ы = 3 πa 2 8 , а площадь фигуры, которая ограничена линией x = a · cos 3 t y = b · sin 3 t , считается по формуле S = 3 πab 8 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Найдём объём тела, порождённого вращением арки циклоиды вокруг её основания. Роберваль находил его, разбив полученное яйцеобразное тело (рис. 5.1) на бесконечно тонкие слои, вписав в эти слои цилиндрики и сложив их объёмы. Доказательство получилось длинное, утомительное и не вполне строгое. Поэтому для его вычисления обратимся к высшей математике. Зададим уравнение циклоиды параметрически.

В интегральном исчислении при изучении объемов пользуется следующим замечанием:

Если кривая, ограничивающая криволинейную трапецию задана параметрическими уравнениями и функции в этих уравнениях удовлетворяют условиям теоремы о замене переменной в определенном интеграле, то объем тела вращения трапеции вокруг оси Ох, будет вычисляться по формуле:

Воспользуемся этой формулой для нахождения нужного нам объема.

Таким же образом вычислим и поверхность этого тела.

L={(x,y): x=a(t - sin t), y=a(1 - cost), 0 ? t ? 2р}

В интегральном исчислении существует следующая формула для нахождения площади поверхности тела вращения вокруг оси х кривой, заданной на отрезке параметрически (t 0 ?t ?t 1):

Применяя эту формулу для нашего уравнения циклоиды получаем:

Рассмотрим также другую поверхность, порождённую вращением арки циклоиды. Для этого построим зеркальное отражение арки циклоиды относительно её основания, и овальную фигуру, образованную циклоидой и её отражением будем вращать вокруг оси KT (рис. 5.2)

Сначала найдём объём тела, образованного вращением арки циклоиды вокруг оси KT. Его объём будем вычислять по формуле(*):

Таким образом, мы посчитали объём половины данного репообразного тела. Тогда весь объём будет равен

На уроках об уравнении прямой на плоскости и уравнениях прямой в пространстве .

Встречайте старую знакомую:

Криволинейную трапецию гордо венчает график , и, как вы знаете, её площадь рассчитывается с помощью определённого интеграла по элементарной формуле или, если короче: .

Рассмотрим ситуацию, когда эта же функция задана в параметрическом виде .

Как найти площадь в этом случае?

При некотором вполне конкретном значении параметра параметрические уравнения будут определять координаты точки , а при другом вполне конкретном значении – координаты точки . Когда «тэ» изменяется от до включительно, параметрические уравнения как раз и «прорисовывают» кривую . Думаю, на счёт пределов интегрирования стало всё понятно. Теперь в интеграл вместо «икса» и «игрека» подставляем функции и раскрываем дифференциал:

Примечание : подразумевается, что функции непрерывны на промежутке интегрирования и, кроме того, функция монотонна на нём.

Формула объёма тела вращения получается так же просто:

Объём тела, получаемого вращением криволинейной трапеции вокруг оси , рассчитывается по формуле или: . Подставляем в неё параметрические функции , а также пределы интегрирования :

Пожалуйста, занесите обе рабочие формулы в свой справочник.

По моим наблюдениям, задачи на нахождение объёма встречаются довольно редко, и поэтому значительная часть примеров данного урока будет посвящена нахождению площади. Не откладываем дело в долгий ящик:

Пример 1

Вычислить площадь криволинейной трапеции , если

Решение : используем формулу .

Классическая задача по теме, которая разбирается всегда и везде:

Пример 2

Вычислить площадь эллипса

Решение : для определённости полагаем, что параметрические уравнения задают канонический эллипс с центром в начале координат, большой полуосью «а» и малой полуосью «бэ». То есть, по условию нам предложено не что иное, как

найти площадь эллипса

Очевидно, что параметрические функции периодичны, и . Казалось бы, можно заряжать формулу, однако не всё так прозрачно. Выясним направление , в котором параметрические уравнения «вычерчивают» эллипс. В качестве ориентира найдём несколько точек, которые соответствуют наиболее простым значениям параметра:

Легко уловить, что при изменении параметра «тэ» от нуля до «двух пи» параметрические уравнения «вычерчивают» эллипс против часовой стрелки :


В силу симметричности фигуры, вычислим часть площади в 1-й координатной четверти, а результат умножим на 4. Здесь мы наблюдаем принципиально такую же картину, которую я комментировал чуть выше: параметрические уравнения «прорисовывают» дугу эллипса «в противоход» оси , но площадь фигуры считается слева направо! Поэтому нижнему пределу интегрирования соответствует значение , а верхнему пределу – значение .

Как я уже советовал на уроке Площадь в полярных координатах , учетверить результат лучше сразу же :

Интеграл (если у кого-то вдруг обнаружился такой невероятный пробел) разобран на уроке Интегралы от тригонометрических функций .

Ответ :

По сути, мы вывели формулу для нахождения площади эллипса . И если на практике вам встретится задача с конкретными значениями «а» и «бэ», то вы легко сможете выполнить сверку/проверку, поскольку задача решена в общем виде.

Площадь эллипса рассчитывается и в прямоугольных координатах, для этого из уравнения необходимо выразить «игрек» и решить задачу точь-в-точь по образцу Примера №4 статьи Эффективные методы решения определённых интегралов . Обязательно посмотрите на этот пример и сравните, насколько проще вычислить площадь эллипса, если он задан параметрически.

И, конечно же, чуть не забыл, параметрические уравнения могут задавать окружность либо эллипс в неканоническом положении.

Пример 3

Вычислить площадь одной арки циклоиды

Чтобы решить задачу, нужно знать, что такое циклоида или хотя бы чисто формально выполнить чертеж. Примерный образец оформления в конце урока. Впрочем, не буду вас отправлять за тридевять земель, на график этой линии можно посмотреть в следующей задаче:

Пример 4

Решение : параметрические уравнения задают циклоиду, и ограничение указывает на тот факт, что речь идёт о её первой арке , которая «прорисовывается», когда значение параметра изменяется в пределах . Заметьте, что здесь «правильное» направление этой «прорисовки» (слева направо), а значит, не возникнет заморочек с пределами интегрирования. Но зато появится куча других прикольных вещей =) Уравнение задаёт прямую , параллельную оси абсцисс и дополнительное условие (см. линейные неравенства ) сообщает нам о том, что нужно вычислить площадь следующей фигуры:

Искомую заштрихованную фигуру я буду ассоциативно называть «крышей дома», прямоугольник – «стеной дома», а всю конструкцию (стена + крыша) – «фасадом дома». Хотя это сооружение больше напоминает какой-то коровник =)

Чтобы найти площадь «крыши» необходимо из площади «фасада» вычесть площадь «стены».

Сначала займёмся «фасадом». Для нахождения его площади нужно выяснить значения , которые задают точки пересечения прямой с первой аркой циклоиды (точки и ). В параметрическое уравнение подставим :

Тригонометрическое уравнение легко решить, банально взглянув на график косинуса : на промежутке равенству удовлетворяют два корня: . В принципе, всё понятно, но, тем не менее, перестрахуемся и подставим их в уравнение :

– это «иксовая» координата точки ;

– а это «иксовая» координата точки .

Таким образом, мы убедились в том, что значение параметра соответствует точке , а значение – точке .

Вычислим площадь «фасада». Для более компактной записи функция часто дифференцируется прямо под интегралом:

Площадь «стены» можно вычислить «школьным» методом, перемножив длины смежных сторон прямоугольника. Длина очевидна, осталось найти . Она рассчитывается как разность «иксовых» координат точек «цэ» и «бэ» (найдены ранее):

Площадь «стены»:

Разумеется, её не стыдно найти и с помощью простейшего определённого интеграла от функции на отрезке :

В результате, площадь «крыши»:

Ответ :

И, конечно же, при наличии чертежа прикидываем по клеточкам, похож ли полученный результат на правду. Похож.

Следующая задача для самостоятельного решения:

Пример 5

Вычислить площадь фигуры, ограниченной линиями, заданными уравнениями

Кратко систематизируем алгоритм решения:

– В большинстве случаев придётся выполнить чертёж и определить фигуру, площадь которой требуется найти.

– На втором шаге следует понять, каким образом рассчитывается искомая площадь: это может быть одиночная криволинейная трапеция, может быть разность площадей, может быть сумма площадей – короче говоря, все те фишки, которые мы рассматривали на уроке .

– На третьем шаге надо проанализировать, целесообразно ли пользоваться симметрией фигуры (если она симметрична), после чего узнать пределы интегрирования (начальное и конечное значение параметра). Обычно для этого необходимо решить простейшее тригонометрическое уравнение – здесь можно использовать аналитический метод, графический метод или бесхитростный подбор нужных корней по тригонометрической таблице .

! Не забываем , что параметрические уравнения могут «прорисовывать» линию и справа налево, в этом случае делаем соответствующую оговорку и поправку в рабочей формуле.

– И на завершающем этапе проводятся технические вычисления. Правдоподобность полученного ответа всегда приятно оценить по чертежу.

А сейчас долгожданная встреча со звёздой:

Пример 6

Вычислить площадь фигуры, ограниченной линиями, заданными уравнениями

Решение : кривая, заданная уравнениями является астроидой , и линейное неравенство однозначно определяет заштрихованную на чертеже фигуру:

Найдём значения параметра, которые определяют точки пересечения прямой и астроиды. Для этого подставим в параметрическое уравнение :


Способы решения подобного уравнения уже перечислены выше, в частности, эти корни легко подбираются по тригонометрической таблице .

Фигура симметрична относительно оси абсцисс, поэтому вычислим верхнюю половинку площади (синяя штриховка), а результат удвоим.

Подставим значение в параметрическое уравнение :
В результате получена «игрековая» координата верхней (нужной нам) точки пересечения астроиды и прямой.

Правой вершине астроиды, очевидно, соответствует значение . Выполним на всякий случай проверку:
, что и требовалось проверить.

Как и в случае с эллипсом, параметрические уравнения «прорисовывают» дугу астроиды справа налево. Для разнообразия оформлю концовку вторым способом: при изменении параметра в пределах функция убывает, следовательно (не забываем удвоить!!):

Интеграл получился довольно громоздкий, и чтобы «не таскать всё за собой» тут лучше прервать решение и преобразовать подынтегральную функцию отдельно. Стандартно понижаем степень с помощью тригонометрических формул :


Годится, в последнем слагаемом подведём функцию под знак дифференциала :

Ответ :

Да, тяжеловато приходится со звёздами =)

Следующее задание для продвинутых студентов:

Пример 7

Вычислить площадь фигуры, ограниченной линиями, заданными уравнениями

Для его решения будет достаточно материалов, которые мы уже рассмотрели, но привычный путь весьма долог, и сейчас я расскажу ещё об одном эффективном методе. Идея на самом деле знакома из урока Вычисление площади с помощью определённого интеграла – это интегрирование по переменной «игрек» и использование формулы . Подставляя в неё параметрические функции , получаем зеркальную рабочую формулу:

Действительно, ну а чем она хуже «стандартной»? В этом состоит ещё одно преимущество параметрической формы – уравнения способны исполнять роль не только «обычной» , но одновременно и обратной функции .

В данном случае предполагается, что функции непрерывны на промежутке интегрирования и функция монотонна на нём. Причём, если убывает на промежутке интегрирования (параметрические уравнения «прорисовывают» график «в противоход» (внимание!! ) оси ), то следует по уже рассмотренной технологии переставить пределы интегрирования либо изначально поставить «минус» перед интегралом.

Решение и ответ Примера №7 в конце урока.

Заключительный мини-раздел посвящен более редкой задаче:

Как найти объем тела вращения,
если фигура ограничена параметрически заданной линией?

Актуализируем формулу, выведенную в начале урока: . Общая методика решения точно такая же, как и при нахождении площади. Выдерну немногочисленные задачи из своей копилки.

Рассмотрим примеры применения полученной формулы, позволяющей вычислять площади фигур, ограниченных параметрически заданными линиями.

Пример.

Вычислить площадь фигуры, ограниченной линией, параметрические уравнения которой имеют вид .

Решение.

В нашем примере параметрически заданная линия представляет собой эллипс с полуосями 2 и 3 единицы. Построим его.

Найдем площадь четверти эллипса, расположенной в первом квадранте. Эта область лежит в интервале . Площадь всей фигуры вычислим, умножив полученное значение на четыре.

Что мы имеем:

Для k = 0 получаем интервал . На этом интервале функция монотонно убывающая (смотрите раздел ). Применяем формулу для вычисления площади и определенный интеграл находим по формуле Ньютона-Лейбница :

Таким образом, площадь исходной фигуры равна .

Замечание.

Возникает логичный вопрос: почему мы брали четверть эллипса, а не половину? Можно было рассмотреть верхнюю (или нижнюю) половину фигуры. Она находится на интервале . Для этого случая мы бы получили

То есть, для k = 0 получаем интервал . На этом интервале функция монотонно убывающая.

Тогда площадь половины эллипса находится как

А вот правую или левую половины эллипса взять не получится.

Параметрическое представление эллипса с центром в начале координат и полуосями a и b имеет вид . Если действовать так же, как и в разобранном примере, то получим формулу для вычисления площади эллипса .

Окружность с центром в начале координат радиуса R через параметр t задается системой уравнений . Если воспользоваться полученной формулой площади эллипса, то сразу можно записать формулу для нахождения площади круга радиуса R : .

Решим еще один пример.

Пример.

Вычислить площадь фигуры, ограниченной кривой, заданной параметрически .

Решение.

Забегая немного вперед, кривая является «вытянутой» астроидой. (Астроида имеет следующее параметрическое представление ).

Остановимся подробно на построении кривой, ограничивающей фигуру. Строить ее мы будем по точкам. Обычно такого построения достаточно для решения большинства задач. В более сложных случаях, несомненно, потребуется детальное исследование параметрически заданной функции с помощью дифференциального исчисления.

В нашем примере .

Эти функции определены для всех действительных значений параметра t , причем, из свойств синуса и косинуса мы знаем, что они периодические с периодом два пи. Таким образом, вычисляя значения функций для некоторых (например ), получим набор точек .

Для удобства занесем значения в таблицу:

Отмечаем точки на плоскости и ПОСЛЕДОВАТЕЛЬНО соединяем их линией.


Вычислим площадь области, расположенной в первой координатной четверти. Для этой области .

При k=0 получаем интервал , на котором функция монотонно убывает. Применяем формулу для нахождения площади:

Полученные определенные интегралы вычислим по формуле Ньютона-Лейбница, а первообразные для формулы Ньютона-Лейбница найдем с помощью рекуррентной формулы вида , где .

Следовательно, площадь четверти фигуры равна , тогда площадь всей фигуры равна .

Аналогично можно показать, что площадь астроиды находится как , а площадь фигуры, ограниченной линией , вычисляется по формуле .

Прежде чем перейти к формулам площади поверхности вращения, дадим краткую формулировку самой поверхности вращения. Поверхность вращения, или, что то же самое - поверхность тела вращения - пространственная фигура, образованная вращением отрезка AB кривой вокруг оси Ox (рисунок ниже).

Представим себе криволинейную трапецию, ограниченную сверху упомянутым отрезком кривой. Тело, образованное вращением этой трапеции вокруг то же оси Ox , и есть тело вращения. А площадь поверхности вращения или поверхности тела вращения - это его внешняя оболочка, не считая кругов, образованных вращением вокруг оси прямых x = a и x = b .

Заметим, что тело вращения и соответственно его поверхность могут быть образованы также вращением фигуры не вокруг оси Ox , а вокруг оси Oy .

Вычисление площади поверхности вращения, заданной в прямоугольных координатах

Пусть в прямоугольных координатах на плоскости уравнением y = f (x ) задана кривая, вращением которой вокруг координатной оси образовано тело вращения.

Формула для вычисления площади поверхности вращения следующая:

(1).

Пример 1. Найти площадь поверхности параболоида, образованную вращением вокруг оси Ox дуги параболы , соответствующей изменению x от x = 0 до x = a .

Решение. Выразим явно функцию, которая задаёт дугу параболы:

Найдём производную этой функции:

Прежде чем воспользоваться формулу для нахождения площади поверхности вращения, напишем ту часть её подынтегрального выражения, которая представляет собой корень и подставим туда найденную только что производную:

Ответ: длина дуги кривой равна

.

Пример 2. Найти площадь поверхности, образуемой вращением вокруг оси Ox астроиды .

Решение. Достаточно вычислить площадь поверхности, получающейся от вращения одной ветви астроиды, расположенной в первой четверти, и умножить её на 2. Из уравнения астроиды выразим явно функцию, которую нам нужно будет подставить в формулу для нахождения площади повержности вращения:

.

Производим интегрирование от 0 до a :

Вычисление площади поверхности вращения, заданной параметрически

Рассмотрим случай, когда кривая, образующая поверхность вращения, задана параметрическими уравнениями

Тогда площадь поверхности вращения вычисляется по формуле

(2).

Пример 3. Найти площадь поверхности вращения, образованной вращением вокруг оси Oy фигуры, ограниченной циклоидой и прямой y = a . Циклоида задана параметрическими уравнениями

Решение. Найдём точки пересечения циклоиды и прямой. Приравнивая уравнение циклоиды и уравнение прямой y = a , найдём

Из этого следует, что границы интегрирования соответствуют

Теперь можем применить формулу (2). Найдём производные:

Запишем подкоренное выражение в формуле, подставляя найденные производные:

Найдём корень из этого выражения:

.

Подставим найденное в формулу (2):

.

Произведём подстановку:

И, наконец, находим

В преобразовании выражений были использованы тригонометрические формулы

Ответ: площадь поверхности вращения равна .

Вычисление площади поверхности вращения, заданной в полярных координатах

Пусть кривая, вращением которой образована поверхность, задана в полярных координатах.

Поделитесь с друзьями или сохраните для себя:

Загрузка...