Биология в современном. Биология в современном естествознании. Характеристика «образов» биологии (традиционная, физико-химическая, эволюционная). Основные методы биологии

Лекция № 1 Современный этап развития биологии

1 Введение. История развития биологии

Биология – это наука о жизни. Ее название возникло из сочетания двух греческих слов bios – жизнь и logos – учение. Этот термин впервые был предложен выдающимся французским естествоиспытателем и эволюционистом Жаном Батистом Ламарком (1802 г.) для обозначения науки о жизни как особом явлении природы.

Биология изучает строение, проявления жизнедеятельности, среду обитания всех живых организмов: бактерий, грибов, растений, животных.

Живое на Земле представлено необычайным разнообразием форм, множеством видов живых существ. В настоящее время уже известно около 500 тыс. видов растений, более 1,5 млн видов животных, большим количеством видов грибов и прокариот, населяющих нашу планету.

К основным задачам биологии относятся следующие:

1 Раскрытие общих свойств живых организмов;

2 Объяснение причин их многообразия;

3 Выявление связей между строением и условиями окружающей среды.

Важное место в этой науке занимают вопросы возникновения и законы развития жизни на Земле – эволюционное учение. Понимание этих вопросов служит не только основой научного мировоззрения, но и необходимо для решения практических задач.

Биология зародилась еще у древних греков и римлян, которые описали известные им растения и животные.

Аристотель (384 – 322 г.г. до н.э.) – основоположник многих наук - впервые попытался упорядочить знания о природе, разграничив ее на «ступени»: неорганический мир, растение, животное, человек. В труде древнеримского врача Галена (131-200 г.г. н.э.) «О частях человеческого тела» дано первое анатомо-физиологическое описание человека.

В средние века составлялись «травники», включавшие описания лекарственных растений.

В эпоху Возрождения интерес к живой природе усилился. Возникли ботаника и зоология.

Изобретение микроскопа в начале 17 века Галилеем (1564-1642) углубило представление о строении живых существ и положило начало изучению клеток и тканей.

А. Левенгук (1632-1723) увидел под микроскопом простейшие, бактерии и сперматозоиды, т.е. явился основоположником микробиологии.

Одним из главных достижений 18 века является создание Карлом Линнеем (1735 г.) системы классификации животных и растений. А в начале 19 века Ж.-Б. Ламарком в книге «Философия зоологии» (1809 г.) впервые была четко сформулирована мысль об эволюции органического мира.

Среди важнейших достижений 19 века – создание клеточной теории М. Шлейденом и Т. Шванном (1838-1839 г.г.), открытие закономерностей наследственности Менделем в 1859 г.

Переворот в биологии произвело учение Ч. Дарвина в 1859 г., который открыл движущие силы эволюции.

Начало 20 века ознаменовалось рождением генетики. Эта наука возникла в результате переоткрытия К. Корренсом, Э. Чермаком и Г. де Фризом законов наследственности, которые ранее были обнаружены Г. Менделем, но остались неизвестными биологам того времени, а также благодаря работа Т. Моргана, обосновавшего хромосомную теорию наследственности.

В 50-е годы значительных успехов достигли исследования тонкой структуры материи. В 1953 г. Д. Уотсон и Ф. Крик предложили модель структуры ДНК в виде двойной спирали и доказали, что она несет в себе наследственную информацию.

Для современной биологии наряду с детальным изучением отдельных структур и организмов характерна тенденция к целостному познанию живой природы, о чем свидетельствует развитие экологии.

Развитие биологии шло по пути последовательного упрощения предмета исследования. В результате возникли многочисленные биологические дисциплины, специализирующиеся на изучении структурно-функциональных особенностей определенных организмов. Этот путь познания – от сложного к простому – называют редукционистским . Редукционизм сводит познание к изучению элементарнейших форм существования материи. Это относится и к живой, и к неживой природе. При таком подходе человек познает законы природы, изучая вместо единого целого, отдельные его части.

Другой подход основан на виталистических принципах. В этом случае жизнь рассматривается как совершенно особое и уникальное явление, которое нельзя объяснить только действием законов физики или химии.

Поэтому основной задачей биологии как науки является истолкование всех явлений живой природы, исходя из научных законов и не забывая при этом, что целому организму присущи свойства, в корне отличающиеся от свойств частей, их составляющих. Например, нейрофизиолог может описать работу отдельного нейрона языком физики и химии, но сам феномен сознания так описать нельзя. Сознание возникает в результате коллективной работы и одновременного изменения электрохимического состояния миллионов нервных клеток, но мы до сих пор не знаем, как возникает мысль и каковы ее химические основы.

В настоящее время значение биологии возрастает с каждым годом. Возникло много биологических дисциплин и число их постоянно увеличивается. Связано это с тем, что биологию подразделяют на отдельные науки по предмету изучения: микробиология , ботаника, зоология ; выделились и развились области биологии, изучающие общие свойства живых организмов: генетика – закономерности наследования признаков; биохимия – пути превращения органических молекул; экология – взаимоотношения организмов с окружающей средой. Функции живых организмов изучает физиология.

В соответствии с уровнем организации живой материи выделились дисциплины:

молекулярная биология, цитология – учение о клетке, гистология – учение о тканях.

По мере расширения области знаний о живых организмах, появляются все новые биологические отрасли науки.

Вирусология Цитология Молекулярная

биология

Бактериология Микробиология Гистология

Микология Физиология

Фитопатология Ботаника БИОЛОГИЯ Анатомия

Орнитология

Биохимия Энзимология

Ветеринария Зоология Генетика Генная

Энтомология Экология инженерия

Эмбриология

2 Использование достижений биологических наук в деятельности человека

Биология имеет огромное значение в решении практических задач. Основные задачи ООН – продовольственная, здравоохранение, топливно-энергетическая, охрана окружающей среды.

Глобальной проблемой современности является производство пищи. Население нашей планеты приближается к 10 млрд человек. Поэтому проблема обеспечения населения продуктами питания, причем питания полноценного, становится все более острой.

В основном эти задачи решают технологические науки: растениеводство и животноводство, которые базируются на достижениях фундаментальных биологических дисциплин, таких как генетика и селекция, физиология и биохимия, молекулярная биология и экология.

На основе методов селекции, развитых и обогащенных современной генетикой, во всем мире идет интенсивный процесс создания более продуктивных сортов растений и пород животных. Важное качество новых сортов с/х культур – их приспособленность к выращиванию в условиях интенсивных технологий. С/х животные, наряду с высокой продуктивностью, должны обладать специфическими морфолого-анатомическими и физиологическими признаками, позволяющими разводить их на птицефабриках, фермах с электродойкой и стойловым содержанием, в клетках звероферм.

С каждым годом увеличивается дефицит белковой пищи, особенно белков животного происхождения, этот дефицит достигает 2,5 млрд т в год. Уже сейчас по данным ВОЗ 4% населения Земли находятся на грани голодной смерти, а хронически не доедают 10 % населения планеты.

Существуют 2 источника пищи – животная и растительная. Гораздо быстрее и легче производить растительную пищу, чем животную. Поэтому изыскиваются возможности получения пищевого белка неживотного происхождения, в первую очередь из растений – из зеленых частей, а также из семян.

Лидирующее место по извлечению белков занимает соя, это основная масличная культура в США и Японии. Кроме растительного масла, соя содержит очень много биологически полноценного белка (около 44%), который используется в пищу после извлечения из семян масла.

Белковые продукты из сои широкое распространение в западных странах получили только в последние 20-30 лет, в то время как в Китае и Японии они используются в пищу уже более 2-х тысячелетий. В этих странах традиционными являются такие продукты как тофу – соевый творог, кори-тофу – замороженный соевый творог, соевое молоко, юба – пленки, снимаемые с соевого молока при кипячении, и др. продукты.

В 1987 г. в США было выпущено на потребительский рынок 330 новых продуктов на основе белков сои, причем растительные белки применяются в самых разнообразных продуктах: от сосисок до мороженого, сыров, йогуртов, салатных приправ.

Растительные белки очень широко используются в продуктах быстрого приготовления, не требующих сложной кулинарной или достаточно длительной термической обработки. Особенно это касается США, где все более используется пища, которую можно потреблять в любом месте и в любое время – это всевозможные готовые завтраки, обеденные блюда, хлопья, палочки, подушечки и т. д. Причем используются такие блюда не только ради экономии времени, но и по соображениям «здорового питания».

Растительные белки широко используются и в приготовлении аналогов молока и молочных продуктов. В практике пищевой промышленности известно производство восстановленного молока из порошка, полученного из обезжиренной соевой муки. Имеется также целый ряд прохладительных белоксодержащих питательных напитков. Например, во Франции, Швеции, Венгрии имеются полностью автоматизированные установки по производству жидкой соевой продукции, соевых напитков или десертных блюд с натуральным ванильным или шоколадным ароматом. Эти продукты по составу соответствуют сбалансированному питанию, но в них отсутствуют лактоза и холестерин, что определяет целевое назначение для лиц, страдающих желудочно-кишечными и сердечно-сосудистыми заболеваниями.

Растительные белки широко применяются также как обогатители пшеничной муки при производстве хлеба и хлебобулочных изделий. Их применение способствует улучшению свойств теста при замесе, удлиняет срок сохранения в свежем виде.

Применяются белки и в кондитерской промышленности. Кроме традиционных добавок соевой муки, в приготовлении печенья, сухих завтраков, смесей для кексов, используются также белки из семян подсолнечника. Используются также и белки других растений – хлопчатника, люпина, фасоли, горчицы, арахиса, рапса, сурепицы. Эти белки обладают высокой биологической ценностью, кроме того, их выход из отходов масло-жировой промышленности достигает 62%.

Растительные белки применяются при изготовлении пищевых изделий как:

1 белковые обогатители;

2 заменители и аналоги мясных продуктов;

3 безаллергенные и безлактозные заменители коровьего молока для детского и диетического питания;

4 структурообразователи и наполнители, а также для образования, стабилизации и разрушения пены, например, при приготовлении имитации мясного фарша, мяса, при приготовлении теста, сосисок, взбитых изделий (украшения на кондитерских товарах), кремов и т.д.;

5 разбавители для регулирования калорийности и биологической ценности диетических пищевых изделий для создания низкокалорийных «легких» продуктов.

В последнее время кроме растительных белков предпринимаются попытки использования белков микробного происхождения, особенно много внимания исследователи уделяют дрожжам. Рост и развитие микроорганизмов не зависит от времени года, погодных условий. В качестве субстрата для размножения микроорганизмов можно использовать отходы сельского хозяйства, спиртовой, целлюлозно-бумажной промышленности, а также нефть и газ. По скорости размножения микроорганизмы не имеют себе равных в мире живых существ. Например, организм коровы весом 500 кг за сутки при усиленном полноценном питании образует 0,5 кг белка, а 500 кг дрожжей за это же время синтезируют более 50 т белка, т.е. в 100 тыс. раз больше.

Производство кормовых и пищевых белков, как растительных, так и микробных, основывается на реализации принципов биотехнологии в промышленных масштабах. На основе принципов биотехнологии широко налажен микробиологический синтез органических кислот, аминокислот, ферментов, витаминов, стимуляторов роста, средств защиты растений.

Для получения более продуктивных форм микроорганизмов используют методы генной инженерии, т.е. прямых манипуляций с индивидуальными генами. Например, зеленая плесень Penicillium glaucum вырабатывает антибиотик пенициллин в малых количествах, а используемая в промышленности плесень Penicillium notatum продуцирует этого антибиотика в 1000 раз больше и т.д.

С помощью пересадки генов биологи –селекционеры работают над созданием растений с контролируемыми сроками цветения, повышенной устойчивостью к заболеваниям, засолению почвы, со способностью к фиксации атмосферного азота (пример – томаты с одновременным созреванием плодов, что обеспечивает механическую уборку).

Теоретические достижения биологии, особенно генетики, широко применяются в медицине. Исследование наследственности человека позволяет разработать методы ранней диагностики, лечения и профилактики наследственных болезней, связанных с генами, а также хромосомными мутациями и аномалиями. Например, гемофилия, серповидно-клеточная анемия – серповидные эритроциты, наблюдается малокровие, изменение костей и др.; фенилкетонурия и т.д.

В условиях растущего воздействия человека на природу одной из коренных проблем является экологизация деятельности общества и сознания человека. Задача состоит не только в выявлении и устранении отрицательных эффектов воздействия человека на природу, например, местного загрязнения среды какими –то веществами, а главным образом в научном обосновании режимов рационального использования резервов биосферы. Негативные последствия хозяйственной деятельности приняли в последние десятилетия характер экологического кризиса, стали опасны не только для здоровья человека, но и для природной среды в целом. Поэтому еще одна из задач, стоящих перед биологией, это обеспечение сохранности биосферы и способности природы к воспроизводству.

  • Взаимосвязь естественнонаучной и гуманитарной культур заключается в следующем:
  • 4. Характеристика знаний в древнем мире (Вавилон, Египет, Китай).
  • 5. Естествознание средневековья (мусульманский Восток, христианский Запад).
  • 6. Наука Нового времени (н. Коперник, Дж. Бруно, г. Галилей, и. Ньютон и другие).
  • 7. Классическое естествознание – характеристика.
  • 8. Неклассическое естествознание – характеристика.
  • 9. Стадии развития естествознания (синкретическая, аналитическая, синтетическая, интегрально-дифференциальная).
  • 10. Древнегреческая натурфилософия (Аристотель, Демокрит, Пифагор и др.).
  • 11. Научные методы. Эмпирический уровень (наблюдение, измерение, эксперимент) и теоретический уровень (абстрагирование, формализация, идеализация, индукция, дедукция).
  • 12. Пространство и время (классическая механика и. Ньютона и теория относительности а. Эйнштейна).
  • 13. Естественнонаучная картина мира: физическая картина мира (механическая, электромагнитная, современная – квантово-релятивистская).
  • 14. Структурные уровни организации материи (микро-, макро- и мегамир).
  • 15. Вещество и поле. Корпускулярно-волновой дуализм.
  • 16. Элементарные частицы: классификация и характеристика.
  • 17. Понятие взаимодействия. Концепция дальнодействия и близкодействия.
  • 18. Характеристика основных видов взаимодействия (гравитационное, электромагнитное, сильное и слабое).
  • 19. Основы квантовой механики: открытия м. Планка, н. Бора, э. Резерфорда, в. Паули, э. Шрёдингера и др.
  • 20. Динамические и статистические законы. Принципы современной физики (симметрии, соответствия, дополнительности и соотношения неопределённостей, суперпозиции).
  • 21. Космологические модели Вселенной (от геоцентризма, гелиоцентризма к модели Большого взрыва и расширяющейся Вселенной).
  • 5. Модель Большого взрыва.
  • 6. Модель расширяющейся Вселенной.
  • 22. Внутреннее строение Земли. Геологическая шкала времени.
  • 23. История развития концепций геосферных оболочек Земли. Экологические функции литосферы.
  • 1) От элементного и молекулярного состава вещества;
  • 2) От структуры молекул вещества;
  • 3) От термодинамических и кинетических (наличие катализаторов и ингибиторов, воздействие материала стенок сосудов и т.Д.) условий, в которых вещество находится в процессе химической реакции;
  • 4) От высоты химической организации вещества.
  • 25. Основные законы химии. Химические процессы и реакционная способность веществ.
  • 26. Биология в современном естествознании. Характеристика «образов» биологии (традиционная, физико-химическая, эволюционная).
  • 1) Метод меченых атомов.
  • 2) Методы рентгеноструктурного анализа и электронной микроскопии.
  • 3) Методы фракционирования.
  • 4) Методы прижизненного анализа.
  • 5) Использование эвм.
  • 27. Концепции происхождения жизни на Земле (креационизм, самопроизвольное (спонтанное) зарождение, теория стационарного состояния, теория панспермии и теория биохимической эволюции).
  • 1. Креационизм.
  • 2. Самопроизвольное (спонтанное) зарождение.
  • 3. Теория стационарного состояния.
  • 4. Теория панспермии.
  • 5. Теория биохимической эволюции.
  • 28. Признаки живых организмов. Характеристика форм жизни (вирусы, бактерии, грибы, растения и животные).
  • 29. Структурные уровни организации живой материи.
  • 30. Происхождение и этапы эволюции человека как биологического вида.
  • 31. Клеточная организация живых систем (структура клетки).
  • 1. Животная клетка:
  • 2. Растительная клетка:
  • 32. Химический состав клетки (элементарный, молекулярный – неорганические и органические вещества).
  • 33. Биосфера – определение. Учение в. И. Вернадского о биосфере.
  • 34. Понятие о живом веществе биосферы. Функции живого вещества в биосфере.
  • 35. Ноосфера – определение и характеристика. Этапы и условия становления ноосферы.
  • 36. Физиология человека. Характеристика физиологических систем человека (нервная, эндокринная, сердечно-сосудистая, дыхательная, выделительная и пищеварительная).
  • 37. Концепция здоровья. Условия ортобиоза. Валеология – понятие.
  • 38. Кибернетика (исходные понятия). Качественная характеристика информации.
  • 39. Концепции самоорганизации: синергетика.
  • 40. Искусственный разум: перспективы развития.
  • 26. Биология в современном естествознании. Характеристика «образов» биологии (традиционная, физико-химическая, эволюционная).

    Биология - это наука о живом, его строении, формах его активности, его строении, сообществах живых организмов, их распространении развитии, связях между собой и средой обитания.

    Современная биологическая наука - результат длительного процесса развития. Но только в первых древних цивилизованных обществах люди стали изучать живые организмы более тщательно, составлять перечни, животных и растений, населяющих разные регионы и классифицировать их. Одним из первых биологов древности был Аристотель.

    В настоящее время биология представляет собой целый комплекс наук о живой природе. Структуру его можно рассматривать с разных точек зрения.

    По объектам исследования биология подразделяется навирусологию, бактериологию, ботанику, зоологию и антропологию.

    По свойствам проявления живого в биологии выделяются:

    1) морфология - наука о строении живых организмов;

    2) физиология - наука о функционировании организмов;

    3) молекулярная биология изучает микроструктуру живых тканей и клеток;

    4) экология рассматривает образ жизни растений и животных и их взаимосвязи с окружающей средой;

    5) генетика исследует законы наследственности и изменчивости.

    По уровню организации исследуемых живых объектов выделяются:

    1) анатомия изучает макроскопическое строение животных;

    2) гистология изучает строение тканей;

    3) цитология исследует строение живых клеток.

    Эта многоплановость комплекса биологических наук обусловлена чрезвычайным многообразием живого мира. К настоящему времени биологами обнаружено и описано более 1 млн. видов животных, около 500 тыс. растений, несколько сот тысяч видов грибов, более 3 тыс. видов бактерий.

    Причем мир живой природы исследован далеко не полностью Число неописанных видов оценивается по меньшей мере в 1 млн.

    В развитии биологии выделяют три основных этапа:

    1) систематики (К.Линней);

    2) эволюционный (Ч.Дарвин);

    3) биологии микромира (Г.Мендель).

    Каждый из них связан с изменением представлений о мире живого и самих основ биологического мышления.

    Три «образа» биологии.

      Традиционная, или натуралистская биология.

    Объектом изучения традиционной биологии всегда была и остается живая природа в ее естественном состоянии и нерасчлененной целостности.

    Традиционная биология имеет ранние истоки своего зарождения. Они идут к средним векам, а становление ее в самостоятельную науку, получившую название «натуралистская биология», приходится на XVIII-XIX века.

    Её методом стало тщательное наблюдение и описание явлений природы, главной задачей - их классифицирование, а реальной перспективой - установление закономерностей их существования, смысла и значения для природы в целом.

    Первый этап натуралистской биологии ознаменовался первыми классификациями животных и растений. Были предложены принципы их группирования в таксоны различных уровней. С именем К.Линнея связано введение бинарной (обозначение рода и вида) номенклатуры, почти в неизменном виде дошедшей до наших дней, а также принцип иерархического соподчинения таксонов и их наименования - классы, отряды, роды, виды, разновидности. Однако недостатком искусственной системы Линнея было то, что он не дал никаких указаний относительно критериев родства, чем и снизил достоинство этой системы.

    Более «естественными», т.е. отражающими родственные связи, были системы, созданные ботаниками - А. Л. Жюссье (1748-1836), О. П. Декандолем (1778-1841) и, в особенности, Ж. Б. Ламарком (1744-1829).

    Труд Ламарка был построен на идее развития от простого к сложному, и главным вопросом был вопрос о происхождении отдельных групп и родственных связях между ними.

    Следует отметить, что в период становления традиционной биологии закладывался комплексный, как мы сегодня говорим, системный подход к исследованию природы.

      Физико-химическая, или экспериментальная биология.

    Термин «физико-химическая биология» был введен в 1970-е годы химиком-органиком Ю. А. Овчинниковым - сторонником тесной интеграции естественных наук и внедрения в биологию современных точных физико-химических методов в целях изучения элементарных уровней организации живой материи - молекулярного и надмолекулярного.

    Понятие «физико-химическая биология» является двуплановым.

    С одной стороны, понятие это означает, что предметом изучения физико-химической биологии являются объекты живой природы, исследуемые на молекулярном и надмолекулярном уровнях.

    С другой, сохраняется и первоначальное его значение: использование физико-химических методов для расшифровки структур и функций живой природы на всех уровнях ее организации.

    Хотя различение это и достаточно условно, главным считают следующее: физико-химическая биология в наибольшей степени содействовала сближению биологии с точными физико-химическими науками и становлению естествознания как единой науки о природе.

    Это не означает, что биология утратила свою индивидуальность. Как раз наоборот. Изучение структуры, функций и саморепродукции фундаментальных молекулярных структур живой материи, результаты которого получили отражение в виде постулатов или аксиом не лишило биологию ее особого положения в системе естествознания. Причина этого в том, что эти молекулярные структуры выполняют биологические функции.

    Следует отметить, что ни в какой другой области естествознания, как в биологии, не обнаруживается столь глубокая связь между методами и техникой эксперимента, с одной стороны, и появлением новых идей, гипотез, концепций, с другой.

    При рассмотрении истории методов физико-химической биологии можно выделить пять этапов, которые находятся между собой как в исторической, так и в логической последовательности. Иными словами, нововведения на одном этапе неизменно стимулировали переход к следующему.

    Какие же это методы?

    "

    Министерство образования Российской Федерации

    Санкт-Петербургский Государственный Институт Психологии и Социальной работы

    Контрольная работа

    По дисциплине: Концепции современного естествознания

    Тема: Биология в современном естествознании

    Выполнила: студентка 1 курса

    Факультета прикладной психологии

    Храбрых Карина Юмовна

    Проверила:

    к.ф.н., доцент каф. Психофизиологии и ВНД

    Быданова. Н.Б.

    Санкт-Петербург


    Биология и её предмет. История биологии.

    Традиционная или натуралистическая биология.

    Современная биология и физико–химический метод.

    Эволюционная биология. История эволюционного учения.

    Биология и её предмет. История биологии

    Биология (от греч. bios - жизнь, logos - наука) - наука о жизни, об общих закономерностях существования и развития живых существ. Предметом ее изучения являются живые организмы, их строение, функции, развитие, взаимоотношения со средой и происхождение. Подобно физике и химии она относится к естественным наукам, предметом изучения которых является природа.

    Хотя концепция биологии как особой естественной науки возникла в XIX веке, биологические дисциплины зародились ранее в медицине и естественной истории. Обычно их традицию ведут от таких античных учёных как Аристотель и Гален через арабских медиков аль-Джахизаhttp://ru.wikipedia.org/wiki/%D0%91%D0%B8%D0%BE%D0%BB%D0%BE%D0%B3 - cite_note-3, ибн-Сину, ибн-Зухра и ибн-аль-Нафиза.

    В эпоху Возрождения биологическая мысль в Европе была революционизирована благодаря изобретению книгопечатания и распространению печатных трудов, интересу к экспериментальным исследованиям и открытию множества новых видов животных и растений в эпоху Великих географических открытий. В это время работали выдающиеся умы Андрей Везалий и Уильям Гарвей, которые заложили основы современной анатомии и физиологии. Несколько позже Линней и Бюффон совершили огромную работу по классификации форм живых и ископаемых существ. Микроскопия открыла для наблюдения ранее неведомый мир микроорганизмов, заложив основу для развития клеточной теории. Развитие естествознания, отчасти благодаря появлению механистической философии, способствовало развитию естественной истории.

    К началу XIX века некоторые современные биологические дисциплины, такие как ботаника и зоология, достигли профессионального уровня. Лавуазье и другие химики и физики начали сближение представлений о живой и неживой природе. Натуралисты, такие как Александр Гумбольдт исследовали взаимодействие организмов с окружающей средой и его зависимость от географии, закладывая основы биогеографии, экологии и этологии. В XIX веке развитие учения об эволюции постепенно привело к пониманию роли вымирания и изменчивости видов, а клеточная теория показала в новом свете основы строения живого вещества. В сочетании с данными эмбриологии и палеонтологии эти достижения позволили Чарльзу Дарвину создать целостную теорию эволюции путём естественного отбора. К концу XIX века идеи самозарождения окончательно уступили место теории инфекционного агента как возбудителя заболеваний. Но механизм наследования родительских признаков всё ещё оставался тайной.

    В начале XX века Томас Морган и его ученики заново открыли законы, исследованные ещё в середине XIX века Грегором Менделем, после чего начала быстро развиваться генетика. К 1930-м годам сочетание популяционной генетики и теории естественного отбора породило современную эволюционную теорию или неодарвинизм. Благодаря развитию биохимии были открыты ферменты и началась грандиозная работа по описанию всех процессов метаболизма. Раскрытие структуры ДНК Уотсоном и Криком дало мощный толчок для развития молекулярной биологии. За ним последовало постулирование центральной догмы, расшифровка генетического кода, а к концу XX века - и полная расшифровка генетического кода человека и ещё нескольких организмов, наиболее важных для медицины и сельского хозяйства. Благодаря этому появились новые дисциплины геномика и протеомика. Хотя увеличение количества дисциплин и чрезвычайная сложность предмета биологии породили и продолжают порождать среди биологов всё более узкую специализацию, биология продолжает оставаться единой наукой, и данные каждой из биологических дисциплин, в особенности геномики, применимы во всех остальных.


    Традиционная или натуралистическая биология

    Ее объектом изучения является живая природа в ее естественном состоянии и нерасчлененной целостности - «Храм природы», как называл ее Эразма Дарвина. Истоки традиционной биологии восходят к средним векам, хотя вполне естественно здесь вспомнить и работы Аристотеля, который рассматривал вопросы биологии, биологического прогресса, пытался систематизировать живые организма («лестница Природы»). Оформление биологии в самостоятельную науку - натуралистическую биологию приходится на 18-19 века. Первый этап натуралистической биологии ознаменовался созданием классификаций животных и растений. К ним относятся известная классификация К. Линнея (1707 - 1778), являющаяся традиционной систематизацией растительного мира, а также классификация Ж.-Б. Ламарка, применившего эволюционный подход к классифицированию растений и животных. Традиционная биология не утратила своего значения и в настоящее время. В качестве доказательства приводят положение экологии среди биологических наук а также во всем естествознании. Ее позиции и авторитет в настоящее время чрезвычайно высоки, а она в первую очередь основывается на принципах традиционной биологии, поскольку исследует взаимоотношения организмов между собой (биотические факторы) и со средой обитания (абиотические факторы).

    Современная биология и физико-химические методы

    На протяжении всей истории развития биологии физические и химические методы были важнейшим инструментом исследования биологических явлений и процессов живой природы. Важность внедрения таких методов в биологию подтверждают экспериментальные результаты, полученные с помощью современных методов исследования, зародившихся в. смежных отраслях естествознания - физике и химии. В этой связи неслучайно в 1970-х годах в отечественном научном лексиконе появился новый термин "физико-химическая биология". Появление этого термина свидетельствует не только о синтезе физических, химических и биологических знаний, но и о качественно новом уровне развития естествознания, в котором происходит непременно взаимное обеспечение отдельных его отраслей. Физико-химическая биология содействует сближению биологии с точными науками - физикой и химией, а также становлению естествознания как единой науки о природе.

    В то же время изучение структуры, функций и репродукции фундаментальных молекулярных структур живой материи не лишает биологию ее индивидуальности и особого положения в естествознании, так как молекулярные структуры наделены биологическими функциями и обладают вполне определенной спецификой.

    Внедрение физических и химических методов способствовало развитию экспериментальной биологии, у истоков которой стояли крупные ученые: К. Бернар (1813- 1878), Г. Гельмгольц (1821- 1894), Л. Пастер (1822- 1895), И.М. Сеченов (1829- 1905), И.П. Павлов (1849-1936), С.Н. Виноградский (1856- 1953), К.А. Тимирязев (1843- 1920), И.И. Мечников (1845- 1916) и многие другие.

    Экспериментальная биология постигает сущность процессов жизнедеятельности преимущественно с применением точных физических и химических методов, при этом иногда прибегая к расчленению биологической целостности, т. е. живого организма с целью проникновения в тайны его функционирования.

    Современная экспериментальная биология вооружилась новейшими методами, позволяющими проникнуть в субмикроскопический, молекулярный и надмолекулярный мир живой природы. Можно назвать несколько широко применяемых методов: метод изотопных индикаторов, методы рентгеноструктурного анализа и электронной микроскопии, методы фракционирования, методы прижизненного анализа и др. Дадим их краткую характеристику.

    Метод изотопных индикаторов, ранее называемый методом меченых атомов, был предложен вскоре после открытия радиоактивности. Сущность его заключается в том, что с помощью радиоактивных (меченых) атомов, введенных в организм, прослеживаются передвижение и превращение веществ в организме.

    С помощью данного метода удалось установить динамичность процессов обмена веществ, проследить за их начальной, промежуточной и конечной стадиями, выявить влияние отдельных структур организма на протекание процессов. Метод изотопных индикаторов позволяет исследовать процессы обмена в живом организме. Это одно из его достоинств. Постоянное обновление белков и мембран, биосинтез белков и нуклеиновых кислот, промежуточный обмен углеводов и жиров, а также многие другие важные микропроцессы были открыты с помощью данного метода.

    Рентгеноструктурынй анализ оказался весьма эффективным при исследовании структур макромолекул, лежащих в основе жизнедеятельности живых организмов. Он позволил установить двухцепочечное строение (двойную спираль) молекул - носителей информации и нитевидную структуру белков. С появлением рентгеноструктурных исследований родилась молекулярная биология.

    Возможности молекулярной биологии гораздо расширились с применением электронно-микроскопических исследований, позволивших установить многослойное строение оболочки нервных волокон состоящих из чередующихся белковых и липидных слоев. Электронно-микроскопические наблюдения дали возможность расшифровать молекулярную организацию живой клетки и механизм функционирования мембран, на основании которых в начале 50-х годов была создана современная мембранная теория; родоначальники ее - английские физиологи А. Ходжкин (1914- 1994), А. Хаксли (р. 1917) а также австралийский физиолог Дж. Эклс.

    Мембранная теория имеет важное общебиологическое значение. Сущность ее заключается в следующем. По обе стороны мембраны за счет встречного потока ионов калия и натрия создается разность потенциалов. Данный процесс сопровождается возбуждением и деполяризацией ранее находящейся в покое поляризованной мембраны и заменой знака ее электрического потенциала. Изменение разности потенциалов едино для всех мембранных систем. Оно обеспечивает одновременно функции барьеров и своеобразных насосных механизмов. Такие функции мембранных систем способствуют активному проникновению веществ как внутрь, так и за пределы клетки. За счет мембран достигается и пространственная изоляция структурных элементов организма.

    Раскрытие структуры мембранных систем и механизма их функционирования - крупное достижение не только в биологии, но и в естествознании в целом.

    В физико-химической биологии широко применяются различные методы фракционирования, основанные на том или ином физическом либо химическом явлении. Довольно эффективный метод фракционирования предложил русский биолог и биохимик М.С. Цвет (1872-1919). Сущность его метода заключается в разделении смеси веществ, основанном на поглощении поверхностью твердых тел компонентов разделенной смеси, на ионном обмене и на образовании осадков.

    Радиоспектроскопия, скоростной рентгеноструктурный анализ, ультразвуковое зондирование и многие другие современные средства исследования составляют арсенал методов прижизненного анализа. Все эти методы не только широко применяются в физико-химической биологии, но и взяты на вооружение современной медициной. Сейчас ни одно клиническое учреждение не обходится без рентгеноскопической, ультразвуковой и другой аппаратуры, позволяющей без ущерба для пациента определить структурные, а иногда функциональные изменения в организме.

    Техника эксперимента современной физико-химической биологии обязательно включает те или иные вычислительные средства, которые в значительной степени облегчают трудоемкую работу экспериментатора и позволяют получить более достоверную информацию о свойствах исследуемого живого объекта.

    Характерная особенность современной физико-химической биологии - ее стремительное развитие. Трудно перечислить все ее достижения, но некоторые из них заслуживают особого внимания. В 1957 г. был реконструирован вирус табачной мозаики из составляющих его компонентов. В 1968- 1971 гг. произведен искусственный синтез гена для одной из транспортных молекул путем последовательного введения в пробирку с синтезируемым геном новых нуклеотидов. Весьма важными оказались результаты исследований по расшифровке генетического кода: было показано, что при введении искусственно синтезированных молекул в бесклеточную систему, т. е. систему без живой клетки, обнаруживаются информационные участки, состоящие из трех последовательных нуклеотидов, являющихся дискретными единицами генетического кода. Авторы этой работы - американские биохимики М. Ниренберг (р. 1927), X. Корана (р. 1922) и Р. Холли (р.1922).

    Расшифровка различных видов саморегуляции - также важное достижение физико-химической биологии. Саморегуляция как характерное свойство живой природы проявляется в разных формах, таких, как передача наследственной информации - генетического кода; регуляция биосинтетических процессов белка (ферментов) в зависимости от характера субстрата и под контролем генетического механизма; регуляция скоростей и направлений ферментных процессов; регуляция роста и морфогенеза, т.е. образования структур разного уровня организации; регуляция анализирующей и управляющей функций нервной системы.

    Живые организмы - весьма сложный объект для исследований. Но все же современные технические средства позволяют все глубже и глубже проникнуть в тайны живой материи.

    Эволюционная биология. История эволюционного учения

    Эволюционная биология - раздел биологии, изучающий происхождение видов от общих предков, наследственность и изменчивость их признаков, размножение и разнообразие форм в историческом контексте.

    Эволюционное учение (биол.) - комплекс знаний об историческом развитии (эволюции) живой природы. Эволюционное учение занимается анализом становления адаптации (приспособлений), эволюции индивидуального развития организмов, факторов, направляющих эволюцию, и конкретных путей исторического развития отдельных групп организмов и органического мира в целом. Основу эволюционного учения составляет эволюционная теория. К эволюционному учению относятся также концепции происхождения жизни и происхождения человека.

    Первые представления о развитии жизни, содержащиеся в трудах Эмпедокла, Демокрита, Лукреция Кара и других античных философов, носили характер гениальных догадок и не были обоснованы биологическими фактами. В XVIII веке в биологии сформировался Трансформизм - учение об изменяемости видов животных и растений, противопоставлявшееся Креационизму, основанному на концепции божественного творения и неизменности видов. Виднейшие трансформисты второй половины XVIII и первой половины XIX вв.- Ж. Бюффон и Э. Ж. Сент-Илер во Франции, Э. Дарвин в Англии, И. В. Гёте в Германии, К. Ф. Рулье в России - обосновывали изменяемость видов главным образом двумя фактами: наличием переходных форм между близкими видами и единством плана строения организмов больших групп животных и растений. Однако они не рассматривали причин и факторов изменения видов.

    Первая попытка создания целостной эволюционной теории принадлежит французскому естествоиспытателю Ж. Б. Ламарку, изложившему в своей «Философии зоологии» (1809) представления о движущих силах эволюции. Согласно Ламарку, переход от низших форм жизни к высшим - Градация - происходит в результате имманентного и всеобщего стремления организмов к совершенству. Разнообразие видов на каждом уровне организации Ламарк объяснял модифицирующим градацию воздействием условий среды. Согласно первому «закону» Ламарка, упражнение органов приводит к их прогрессивному развитию, а неупражнение - к редукции; согласно второму «закону», результаты упражнения и неупражнения органов при достаточной продолжительности воздействия закрепляются в наследственности организмов и далее передаются из поколения в поколение уже вне зависимости от вызвавших их воздействий среды. «Законы» Ламарка основаны на ошибочном представлении о том, что природе свойственны стремление к совершенствованию и наследование организмами благоприобретенных свойств.

    Истинные факторы эволюции вскрыл Ч. Дарвин, тем самым создав научно обоснованную эволюционную теорию (изложена в книге «Происхождение видов путём естественного отбора, или Сохранение благоприятствуемых пород в борьбе за жизнь», 1859). Движущими силами эволюции, по Дарвину являются: неопределённая изменчивость - наследственно обусловленное разнообразие организмов каждой популяции любого вида, борьба за существование, в ходе которой гибнут или устраняются от размножения менее приспособленные организмы, и естественный отбор - переживание более приспособленных особей, в результате которого накапливаются и суммируются полезные наследственные изменения и возникают новые адаптации. Ламаркизм и дарвинизм в трактовке эволюции диаметрально противоположны: ламаркизм эволюцию объясняет адаптацией, а дарвинизм адаптацию - эволюцией. Кроме ламаркизма, существует ещё ряд концепций, отрицающих значение отбора, как движущей силы эволюции. Развитие биологии подтвердило правильность дарвиновской теории. Поэтому в современной биологии термины «дарвинизм» и «эволюционное учение» часто употребляются как синонимы. Близок по смыслу и термин «синтетическая теория эволюции», который подчёркивает сочетание основных положений теории Дарвина, генетики и ряда эволюционных обобщений других областей биологии.

    Развитие генетики позволило понять механизм возникновения неопределённой наследственной изменчивости, предоставляющей материал эволюции. В основе этого явления лежат стойкие изменения наследственных структур - Мутации. Мутационная изменчивость не направлена: вновь возникающие мутации не адекватны условиям окружающей среды и, как правило, нарушают уже существующие адаптации. Для организмов, не имеющих оформленного ядра, мутационная изменчивость служит основным материалом эволюции. Для организмов, клетки которых имеют оформленное ядро, большое значение имеет комбинативная изменчивость - комбинирование генов в процессе полового размножения. Элементарной единицей эволюции является Популяция. Относительная обособленность популяций приводит к их репродуктивной изоляции - ограничению свободы скрещивания особей разных популяций. Репродуктивная изоляция обеспечивает уникальность Генофонда - генетического состава каждой популяции - и тем самым возможность её самостоятельной эволюции. В процессе борьбы за существование проявляется биологическая разнокачественность составляющих популяцию особей, определяемая комбинативной и мутационной изменчивостью. При этом часть особей гибнет, а другие выживают и размножаются. В результате естественного отбора вновь возникающие мутации комбинируются с генами уже прошедших отбор особей, их фенотипическое выражение меняется, и на их основе возникают новые адаптации. Таким образом, именно отбор является главным движущим фактором эволюции, обусловливающим возникновение новых адаптаций, преобразование организмов и видообразование. Отбор может проявляться в разных формах: стабилизирующий, обеспечивающий сохранение в неизменных условиях среды уже сформировавшихся адаптации, движущий, или ведущий, приводящий к выработке новых адаптаций, и дизруптивный, или разрывающий, обусловливающий возникновение Полиморфизма при разнонаправленных изменениях среды обитания популяции.

    В современном эвалюционном учении представление о факторах эволюции обогатилось выделением популяции как элементарной единицы эволюции, теорией изоляции и углублением теории естественного отбора. Анализ изоляции, как фактора, обеспечивающего увеличение разнообразия жизненных форм, лежит в основе современных представлений о видообразовании и структуре вида. Наиболее полно изучено аллопатрическое видообразование, связанное с расселением вида и географических изоляцией окраинных популяций. Менее изучено симпатрическое видообразование, обусловленное экологической, хронологической или этологической (поведенческой) изоляцией. Эволюционные процессы, протекающие внутри вида и завершающиеся видообразованием, часто объединяют под общим названием микроэволюции. Макроэволюцией называется историческое развитие групп организмов (таксонов) надвидового ранга. Эволюция надвидовых таксонов является результатом видообразования, происходящего под действием естественного отбора. Однако использование разных масштабов времени (эволюция больших таксонов складывается из многих этапов видообразования) и методов изучения (использование данных палеонтологии, сравнит. морфологии, эмбриологии и др.) позволяет выявить закономерности, ускользающие при изучении микроэволюции. Важнейшими задачами концепции макроэволюции являются анализ соотношения индивидуального и исторического развития организмов, анализ закономерностей филогенеза и главных направлений эволюционного процесса. В 1866 немецкий естествоиспытатель Э. Геккель сформулировал Биогенетический закон, согласно которому в онтогенезе кратко повторяются этапы филогенеза данной систематической группы. Мутации проявляются в фенотипе взрослого организма в результате того, что они изменяют процессы его онтогенеза. Поэтому естественный отбор взрослых особей приводит к эволюции процессов онтогенеза - взаимозависимостей развивающихся органов, названных И. И. Шмальгаузеном онтогенетическими корреляциями. Перестройка системы онтогенетических корреляций под действием движущего отбора приводит к возникновению изменений - Филэмбриогенезов, посредством которых в ходе филогенеза формируются новые признаки организмов. В том случае, если изменение происходит на конечной стадии развития органа, осуществляется дальнейшая эволюция органов предков; бывают также отклонения онтогенеза на промежуточных стадиях, что приводит к перестройке органов; изменение закладки и развития ранних зачатков может приводить к возникновению органов, отсутствовавших у предков. Однако эволюция онтогенетических корреляций под действием стабилизирующего отбора приводит к сохранению лишь тех корреляций, которые наиболее надёжно обеспечивают процессы онтогенеза. Эти корреляции и являются рекапитуляциями - повторениями в онтогенезе потомков филогенетических состояний предков; благодаря им обеспечивается биогенетический закон. Направление филогенеза каждой систематической группы определяется конкретным соотношением среды, в которой протекает эволюция данного таксона, и его организации. Дивергенция (расхождение признаков) двух или нескольких таксонов, возникающих от общего предка, обусловлена различиями в условиях среды; она начинается на популяционном уровне, обусловливает увеличение числа видов и продолжается на уровне надвидовых таксонов. Именно дивергентной эволюцией (обусловлено таксономическое разнообразие живых существ. Реже встречается параллельная эволюция. Она возникает в тех случаях, когда первично дивергировавшие таксоны остаются в сходных условиях среды и вырабатывают на основе сходной, унаследованной от общего предка, организации сходные приспособления. Конвергенция (схождение признаков) происходит в тех случаях, когда неродственные таксоны приспосабливаются к одинаковым условиям. Биологический прогресс может достигаться путём общего повышения уровня организации, обусловливающего адаптацию организмов к условиям среды, более широким и разнообразным, чем те, в которых обитали их предки. Такие изменения - Ароморфозы - возникают редко и обязательно сменяются Алломорфозами - дивергенцией и приспособлением к более частным условиям в процессе освоения новой среды обитания. Выработка узких адаптаций в филогенезе группы приводит к специализации. Выделенные Шмальгаузеном 4 основных типа специализации - Теломорфоз, Гипоморфоз, Гиперморфоз и Катаморфоз - различаются по характеру приспособлений, но все приводят к замедлению темпов эволюции и в силу утраты органами специализированных животных мультифункциональности - к снижению эволюционной пластичности. При сохранении стабильных условий среды специализированные виды могут существовать неограниченно долго. Так возникают «живые ископаемые», например многие роды моллюсков и плеченогих, существующие с кембрия до наших дней. При резких изменениях условий жизни специализированные виды вымирают, тогда как более пластичные успевают адаптироваться к этим изменениям.

    Эволюционное учение и главным образом его теоретическое ядро - эволюционная теория - служат как важным естественнонаучным обоснованием диалектического материализма, так и одной из методологических основ современной биологии.


    Список литературы:

    1. Биология. Большой энциклопедический словарь / Гл.ред. М.С. Гиляров. 3-е изд. 1998 г.

    2. Большая советская энциклопедия 1970 г.

    3. Кузнецов В.И., Идлис Г.М., Гутина В.Н. Естествознание. М., 1996

    4. Карпенков С.Х. Концепции современного естествознания. 6-е изд., перераб. и доп. - М.: Высш. шк., 2003.

    Это наука о жизни. В настоящее время она представляет совокупность наук о живой природе.

    Биология изучает все проявления жизни: строение, функции, развитие и происхождение живых организмов , их взаимоотношения в природных сообществах со средой обитания и с другими живыми организмами.

    С тех пор как человек стал осознавать свое отличие от животного мира, он начал изучать окружающий его мир.

    Сначала от этого зависела его жизнь. Первобытным людям необходимо было знать, какие живые организмы можно употреблять в пищу, использовать в качестве лекарств, для изготовления одежды и жилищ, а какие из них ядовиты или опасны.

    С развитием цивилизации человек смог позволить себе такую роскошь, как занятие наукой в познавательных целях.

    Исследования культуры древних народов показали, что они имели обширные знания о растениях, животных и широко их применяли в повседневной жизни.

    Современная биология - комплексная наука , для которой характерно взаимопроникновение идей и методов различных биологических дисциплин, а также других наук - прежде всего физики, химии и математики.
    Основные направления развития современной биологии. В настоящее время условно можно выделить три направления в биологии.

    Во-первых, это классическая биология. Ее представляют ученые-натуралисты, изучающие многообразие живой природы . Они объективно наблюдают и анализируют все, что происходит в живой природе, изучают живые организмы и классифицируют их. Неправильно думать, что в классической биологии все открытия уже сделаны.

    Во второй половине XX в. не только описано много новых видов, но и открыты крупные таксоны, вплоть до царств (Погонофоры) и даже надцарств (Архебактерии, или Археи). Эти открытия заставили ученых по-новому взглянуть на всю историю развития живой природы, Для настоящих ученых-натуралистов природа -- это самоценность. Каждый уголок нашей планеты для них уникален. Именно поэтому они всегда среди тех, кто остро чувствует опасность для окружающей нас природы и активно выступает в ее защиту.

    Второе направление - это эволюционная биология.

    В XIX в. автор теории естественного отбора Чарлз Дарвин начинал как обычный натуралист: он коллекционировал, наблюдал, описывал, путешествовал, раскрывая тайны живой природы. Однако основным результатом его работы , сделавшим его известным ученым, стала теория, объясняющая органическое разнообразие.

    В настоящее время изучение эволюции живых организмов активно продолжается. Синтез генетики и эволюционной теории привел к созданию так называемой синтетической теории эволюции. Но и сейчас еще есть много нерешенных вопросов, ответы на которые ищут ученые-эволюционисты.


    Созданная в начале XX в. нашим выдающимся биологом Александром Ивановичем Опариным первая научная теория происхождения жизни была чисто теоретической. В настоящее время активно ведутся экспериментальные исследования данной проблемы и благодаря применению передовых физико-химических методов уже сделаны важные открытия и можно ожидать новых интересных результатов.

    Новые открытия позволили дополнить теорию антропогенеза. Но переход от животного мира к человеку и сейчас еще остается одной из самых больших загадок биологии.


    Третье направление - физико-химическая биология, исследующая строение живых объектов при помощи современных физических и химических методов. Это быстро развивающееся направление биологии, важное как в теоретическом, так и в практическом отношении. Можно с уверенностью говорить, что в физико-химической биологии нас ждут новые открытия, которые позволят решить многие проблемы, стоящие перед человечеством.


    Развитие биологии как науки. Современная биология уходит корнями в древность и связана с развитием цивилизации в странах Средиземноморья. Нам известны имена многих выдающихся ученых, внесших вклад в развитие биологии. Назовем лишь некоторых из них.

    Гиппократ (460 - ок. 370 до н. э.) дал первое относительно подробное описание строения человека и животных, указал на роль среды и наследственности в возникновении болезней. Его считают основоположником медицины.


    Аристотель (384-322 до н. э.) делил окружающий мир на четыре царства: неодушевленный мир земли, воды и воздуха; мир растений; мир животных и мир человека. Он описал многих животных, положил начало систематике. В написанных им четырех биологических трактатах содержались практически все известные к тому времени сведения о животных. Заслуги Аристотеля настолько велики, что его считают основоположником зоологии.

    Теофраст (372-287 до н. э.) изучал растения. Им описано более 500 видов растений, даны сведения о строении и размножении многих из них, введены в употребление многие ботанические термины. Его считают основоположником ботаники.


    Гай Плиний Старший (23-79) собрал известные к тому времени сведения о живых организмах и написал 37 томов энциклопедии «Естественная история». Почти до средневековья эта энциклопедия была главным источником знаний о природе.

    Клавдий Гален в своих научных исследованиях широко использовал вскрытия млекопитающих. Он первым сделал сравнительно-анатомическое описание человека и обезьяны. Изучал центральную и периферическую нервную систему. Историки науки считают его последним великим биологом древности.

    В средние века господствующей идеологией была религия. Подобно другим наукам, биология в этот период еще не выделилась в самостоятельную область и существовала в общем русле религиозно-философских взглядов. И хотя накопление знаний о живых организмах продолжалось, о биологии как науке в тот период можно говорить лишь условно.

    Эпоха Возрождения является переходной от культуры средних веков к культуре нового времени. Коренные социально-экономические преобразования того времени сопровождались новыми открытиями в науке.

    Самый известный ученый этой эпохи Леонардо да Винчи (1452 - 1519) внес определенный вклад и в развитие биологии.

    Он изучал полет птиц, описал многие растения, способы соединения костей в суставах, деятельность сердца и зрительную функцию глаза, сходство костей человека и животных.

    Во второй половине XV в. естественнонаучные знания начинают быстро развиваться. Этому способствовали географические открытия, позволившие существенно расширить сведения о животных и растениях. Быстрое накопление научных знаний о живых организмах вело к разделению биологии на отдельные науки.


    В XVI-XVII вв. стали стремительно развиваться ботаника и зоология.

    Изобретение микроскопа (начало XVII в.) позволило изучать микроскопическое строение растений и животных. Были открыты невидимые для невооруженного глаза микроскопически малые живые организмы - бактерии и простейшие.

    Большой вклад в развитие биологии внес Карл Линней, предложивший систему классификации животных и растений,

    Карл Максимович Бэр (1792-1876) в своих работах сформулировал основные положения теории гомологичных органов и закона зародышевого сходства, заложившие научные основы эмбриологии.

    В 1808 г. в работе «Философия зоологии» Жан Батист Ламарк поставил вопрос о причинах и механизмах эволюционных преобразований и изложил первую по времени теорию эволюции.

    Огромную роль в развитии биологии сыграла клеточная теория, которая научно подтвердила единство живого мира и послужила одной из предпосылок возникновения теории эволюции Чарлза Дарвина. Авторами клеточной теории считают зоолога Теодора Iванна (1818-1882) и ботаника Маттиаса Якоба Шлейдена (1804-1881).

    На основе многочисленных наблюдений Ч. Дарвин опубликовал в 1859 г. свой основной труд «О происхождении видов путем естественного отбора или Сохранении благоприятствуемых пород в борьбе за жизнь», в котором сформулировал основные положения теории эволюции, предложил механизмы эволюции и пути эволюционных преобразований организмов.

    В XIX в. благодаря работам Луи Пастера (1822-1895), Роберта Коха (1843-1910), Ильи Ильича Мечникова в качестве самостоятельной науки оформилась микробиология.

    XX век начался с переоткрытия законов Грегора Менделя, что ознаменовало собой начало развития генетики как науки.

    В 40-50-е годы XX в. в биологии стали широко использоваться идеи и методы физики, химии, математики, кибернетики и других наук, а в качестве объектов исследования - микроорганизмы. В результате возникли и стали бурно развиваться как самостоятельные науки биофизика, биохимия, молекулярная биология, радиационная биология, бионика и др. Исследования в космосе способствовали зарождению и развитию космической биологии.
    В XX в. появилось направление прикладных исследований - биотехнология. Это направление, несомненно, будет стремительно развиваться и в XXI в. Более подробно об этом направлении развития биологии вы узнаете при изучении главы «Основы селекции и биотехнологии».

    В настоящее время биологические знания используются во всех сферах человеческой деятельности: в промышленности и сельском хозяйстве, медицине и энергетике.

    Чрезвычайно важное значение имеют экологические исследования. Мы, наконец, стали осознавать, что хрупкое равновесие, существующее на нашей маленькой планете, легко разрушить. Перед человечеством встала грандиозная задача - сохранение биосферы с целью поддержания условий существования и развития цивилизации. Без биологических знаний и специальных исследований решить ее невозможно. Таким образом, в настоящее время биология стала реальной производительной силой и рациональной научной основой отношений между человеком и природой.


    Классическая биология. Эволюционная биология. Физико-химическая биология.

    1. Какие направления в развитии биологии вы можете выделить?
    2. Какие великие ученые древности внесли заметный вклад в развитие-биологических знаний?
    3. Почему в средние века о биологии как науке можно было говорить лишь условно?
    4. Почему современную биологию считают комплексной наукой?
    5. Какова роль биологии в современном обществе?
    6. Подготовьте сообщение на одну из следующих тем:
    7. Роль биологии в современном обществе.
    8. Роль биологии в космических исследованиях.
    9. Роль биологических исследований в современной медицине.
    10. Роль выдающихся биологов - наших соотечественников в развитии мировой биологии.

    Насколько изменились взгляды ученых на разнообразие живого, можно продемонстрировать на примере разделения живых организмов на царства. Еще в 40-е годы XX столетия все живые организмы делились на два царства: Растения и Животные. В царство растений включались также бактерии и грибы. Позднее более детальное изучение организмов привело к выделению четырех царств: Прокариоты (Бактерии), Грибы, Растения и Животные. Данная система приводится в школьной биологии.

    В1959 г. было предложено делить мир живых организмов на пять царств: Прокариоты, Протисты (Простейшие), Грибы, Растения и Животные.

    Данная система часто приводится в биологической (особенно переводной) литературе.

    Разработаны и продолжают разрабатываться и другие системы, включающие 20 и более царств. Например, предложено выделить три надцарства: Прокариоты, Археи (Архебактерии) и Эукариоты, Каждое надцарство включает несколько царств.

    Каменский А. А. Биология 10-11 класс
    Отправлено читателями с интернет-сайта

    Онлайн библиотека с учениками и книгами, плани-конспекти уроков с Биологии 10 класса, книги и учебники согласно календарного плана планирование Биологии 10 класса

    Содержание урока конспект урока и опорный каркас презентация урока интерактивные технологии акселеративные методы обучения Практика тесты, тестирование онлайн задачи и упражнения домашние задания практикумы и тренинги вопросы для дискуссий в классе Иллюстрации видео- и аудиоматериалы фотографии, картинки графики, таблицы, схемы комиксы, притчи, поговорки, кроссворды, анекдоты, приколы, цитаты Дополнения

    Роль биологии в современной действительности переоценить трудно, ведь она подробно изучает во всех ее про-явлениях. В настоящее время эта наука объединяет такие важные понятия, как эволюция, генетика, гомеостаз и энергия. В ее функции входит исследование развития всего живого, а именно: строение организмов, их поведение, а также -отношения между собой и взаимосвязь с окружающей средой.

    Значение биологии в жизни человека становится понятным, если провести параллель между основными проблемами жизнедеятельности индивида, например, здоровьем, питанием, а также выбором оптимальных условий существования. На сегодняшний день известны многочисленные науки, которые отделились от биологии, став не менее важными и самостоятельными. К таким можно отнести зоологию, ботанику, микробиологию, а также вирусологию. Из них трудно выделить наиболее значимые, все они представляют собой комплекс ценнейших фундаментальных знаний, накопленных цивилизацией.

    В этой области знаний работали выдающиеся ученые, такие, как Клавдий Гален, Гиппократ, Карл Линней, Чарльз Дарвин, Александр Опарин, Илья Мечников и многие другие. Благодаря их открытиям, особенно изучению живых организмов, появилась наука морфология, а также физиология, которая собрала в себе знания о системах организмов живых существ. Неоценимую роль в развитии наследственных заболеваний сыграла генетика.

    Биология стала прочным фундаментом в медицине, социологии и экологии. Важно, что эта наука, как и любая другая, не статична, а постоянно пополняется новыми знаниями, которые трансформируются в виде новых биологических теорий и законов.

    Роль биологии в современном обществе, а особенно в медицине, бесценна. Именно с ее помощью были найдены способы лечения бактериологических и быстро распространяющихся вирусных заболеваний. Каждый раз, когда мы задумываемся над вопросом о том, какова роль биологии в современном обществе, вспоминаем, что именно благодаря героизму медиков-биологов исчезли с планеты Земля очаги страшных эпидемий: чумы, холеры, сибирской язвы, оспы и других не менее опасных для жизни человека заболеваний.

    Можно смело утверждать, опираясь на факты, что роль биологии в современном обществе растет непрерывно. Невозможно себе представить современную жизнь без селекции, генетических исследований, производства новых продуктов питания, а также экологичных источ-ников энергии.

    Основное значение биологии состоит в том, что она представляет собой фундамент и теоретическую базу для многих перспективных наук, например, таких, как, генетическая инженерия и бионика. Ей принадлежит великое открытие - расшифровка Такое направление, как биотехнология, было также создано на основе знаний, объединенных в биологии. В настоящее время именно такого характера технологии позволяют создавать безопасные лекарства для профилактики и лечения, которое не наносит вреда организму. В результате удается увеличить не только продолжительность жизни, но и ее качество.

    Роль биологии в современном обществе заключается и в том, что есть такие сферы, где ее знания просто необходимы, например, фармацевтическая промышленность, геронтология, криминалистика, сельское хозяйство, строительство, а также освоение космоса.

    Нестабильная экологическая обстановка на Земле требует переосмысления производственной деятельности, а значение биологии в жизни человека переходит на новую ступень. С каждым годом мы становимся свидетелями широкомасштабных катастроф, которые поражают как беднейшие государства, так и высокоразвитые. Во многом они вызваны ростом неразумным использованием источников энергии, а также существующими экономическими и социальными противоречиями в современном обществе.

    Настоящее нам четко указывает, что само дальнейшее существование цивилизации возможно только при наличии гармонии в Только соблюдение биологических закономерностей, а также повсеместное использование прогрессивных биотехнологий на основе экологического мышления позволит обеспечить естественное безопасное сосуществование всем без исключения жителям планеты.

    Роль биологии в современном обществе выражается в том, что она в настоящее время трансформировалась в реальную силу. Благодаря ее знаниям возможно процветание нашей планеты. Именно поэтому на вопрос о том, какова роль биологии в современном обществе, ответ может быть таким - это заветный ключ к гармонии между природой и человеком.

    Поделитесь с друзьями или сохраните для себя:

    Загрузка...