Операции с производными. Что такое производная?Определение и смысл производной функции. Общепринятые обозначения производной функции в точке

Понятие производной

Пусть функция f (x ) определена на некотором промежутке X. Придадим значению аргумента в точке x 0 Х произволь­ное приращение Δx так, чтобы точка x 0 + Δx также принад­лежала X. Тогда соответствующее приращение функции f(x) составит Δу = f (x 0 + Δx ) - f (x 0 ).

Определение 1. Производной функции f(x) в точке x 0 назы­вается предел отношения приращения функции в этой точке к приращению аргумента при Δx 0 (если этот предел сущест­вует).

Для обозначения производной функции употребимы симво­лы у" (x 0 ) или f "(x 0 ):

Если в некоторой точке x 0 предел (4.1) бесконечен:

то говорят, что в точке x 0 функция f (x ) имеет бесконечную производную.

Если функция f (x ) имеет производную в каждой точке мно­жества X, то производная f"(x) также является функцией от аргумента х, определенной на X.

Геометрический смысл производной

Для выяснения геометрического смысла производной нам понадобится определение касательной к графику функции в данной точке.

Определение 2. Касательной к графику функции у = f (x ) в точке М называется предельное положение секущей MN, ког­да точка N стремится к точке М по кривой f (x ).

Пусть точка М на кривой f (x ) соответствует значению ар­гумента x 0 , а точка N - значению аргумента x 0 + Δx (рис. 4.1). Из определения касательной следует, что для ее существования в точке x 0 необходимо, чтобы существовал предел , который равен углу наклона касательной к оси Оx . Из треугольника MNA следует, что

Если производная функции f (x ) в точке x 0 существует, то, согласно (4.1), получаем

Отсюда следует наглядный вывод о том, что производная f "(x 0 ) равна угловому коэффициенту (тангенсу угла наклона к положительному направлению оси Ох) касательной кграфику функции у = f (x ) в точке М (x 0 , f (x 0 )). При этомуголнаклона касательной определяется из формулы (4.2):

Физический смысл производной

Предположим, что функция l = f (t ) описывает закон дви­жения материальной точки по прямой как зависимость пути l от времени t. Тогда разность Δl = f(t + Δt) - f(t) - это путь, пройденный за интервал времени Δt , а отношение Δl t - средняя скорость за время Δt . Тогда предел определяет мгновенную скорость точки в момент вре­мени t как производную пути по времени.

В определенном смысле производную функции у = f(x) можно также трактовать как скорость изменения функции: чем больше величина f "(x ), тем больше угол наклона касательной к кривой, тем круче график f (x ) и быстрее растет функция.



Правая и левая производные

По аналогии с понятиями односторонних пределов функ­ции вводятся понятия правой и левой производных функции в точке.

Определение 3. Правой (левой) производной функции у = f(x) в точке x 0 называется правый (левый) предел отноше­ния (4.1) при Δx 0, если этот предел существует.

Для обозначения односторонних производных используется следующая символика:

Если функция f (x ) имеет в точке x 0 производную, то она имеет левую и правую производные в этой точке, которые сов­падают.

Приведем пример функции, у которой существуют одно­сторонние производные в точке, не равные друг другу. Это f (x ) = |x |. Действительно, в точке х = 0 имеем f’ + (0) = 1, f" - (0) = -1 (рис. 4.2) и f’ + (0) ≠ f’ - (0), т.е. функция не имеет производной при х = 0.

Операцию нахождения производной функции называют ее дифференцированием; функция, имеющая производную в точ­ке, называется дифференцируемой.

Связь между дифференцируемостью и непрерывностью функции в точке устанавливает следующая теорема.

ТЕОРЕМА 1. Если функция дифференцируема в точке x 0 , то она и непрерывна в этой точке.

Обратное утверждение неверно: функция f (x ), непрерыв­ная в точке, может не иметь производную в этой точке. Таким примером является функция у = |x |; она непрерывна в точке x = 0, но не имеет производной в этой точке.

Таким образом, требование дифференцируемости функции является более сильным, чем требование непрерывности, по­скольку из первого автоматически вытекает второе.

Уравнение касательной к графику функции в данной точке

Как было указано в разделе 3.9, уравнение прямой, про­ходящей через точку М (x 0 , у 0 ) с угловым коэффициентом k имеет вид

Пусть задана функция у = f (x ). Тогда посколькуее произ­водная в некоторой точке М (x 0 , у 0 ) является угловым коэффи­циентом касательной к графику этой функции в точке М, то отсюда следует, что уравнение касательной к графику функ­ции f (x ) в этой точке имеет вид

Производной функции $y = f(x)$ в данной точке $х_0$ называют предел отношения приращения функции к соответствующему приращению его аргумента при условии, что последнее стремится к нулю:

$f"(x_0)={lim}↙{△x→0}{△f(x_0)}/{△x}$

Дифференцированием называют операцию нахождения производной.

Таблица производных некоторых элементарных функций

Функция Производная
$c$ $0$
$x$ $1$
$x^n$ $nx^{n-1}$
${1}/{x}$ $-{1}/{x^2}$
$√x$ ${1}/{2√x}$
$e^x$ $e^x$
$lnx$ ${1}/{x}$
$sinx$ $cosx$
$cosx$ $-sinx$
$tgx$ ${1}/{cos^2x}$
$ctgx$ $-{1}/{sin^2x}$

Основные правила дифференцирования

1. Производная суммы (разности) равна сумме (разности) производных

$(f(x) ± g(x))"= f"(x)±g"(x)$

Найти производную функции $f(x)=3x^5-cosx+{1}/{x}$

Производная суммы (разности) равна сумме (разности) производных.

$f"(x) = (3x^5)"-(cos x)" + ({1}/{x})" = 15x^4 + sinx - {1}/{x^2}$

2. Производная произведения

$(f(x) · g(x))"= f"(x) · g(x)+ f(x) · g(x)"$

Найти производную $f(x)=4x·cosx$

$f"(x)=(4x)"·cosx+4x·(cosx)"=4·cosx-4x·sinx$

3. Производная частного

$({f(x)}/{g(x)})"={f"(x)·g(x)-f(x)·g(x)"}/{g^2(x)}$

Найти производную $f(x)={5x^5}/{e^x}$

$f"(x)={(5x^5)"·e^x-5x^5·(e^x)"}/{(e^x)^2}={25x^4·e^x-5x^5·e^x}/{(e^x)^2}$

4. Производная сложной функции равна произведению производной внешней функции на производную внутренней функции

$f(g(x))"=f"(g(x))·g"(x)$

$f"(x)=cos"(5x)·(5x)"=-sin(5x)·5= -5sin(5x)$

Физический смысл производной

Если материальная точка движется прямолинейно и ее координата изменяется в зависимости от времени по закону $x(t)$, то мгновенная скорость данной точки равна производной функции.

Точка движется по координатной прямой согласно закону $x(t)= 1,5t^2-3t + 7$, где $x(t)$ - координата в момент времени $t$. В какой момент времени скорость точки будет равна $12$?

1. Скорость – это производная от $x(t)$, поэтому найдем производную заданной функции

$v(t) = x"(t) = 1,5·2t -3 = 3t -3$

2. Чтобы найти, в какой момент времени $t$ скорость была равна $12$, составим и решим уравнение:

Геометрический смысл производной

Напомним, что уравнение прямой, не параллельной осям координат, можно записать в виде $y = kx + b$, где $k$ – угловой коэффициент прямой. Коэффициент $k$ равен тангенсу угла наклона между прямой и положительным направлением оси $Ох$.

Производная функции $f(x)$ в точке $х_0$ равна угловому коэффициенту $k$ касательной к графику в данной точке:

Следовательно, можем составить общее равенство:

$f"(x_0) = k = tgα$

На рисунке касательная к функции $f(x)$ возрастает, следовательно, коэффициент $k > 0$. Так как $k > 0$, то $f"(x_0) = tgα > 0$. Угол $α$ между касательной и положительным направлением $Ох$ острый.

На рисунке касательная к функции $f(x)$ убывает, следовательно, коэффициент $k < 0$, следовательно, $f"(x_0) = tgα < 0$. Угол $α$ между касательной и положительным направлением оси $Ох$ тупой.

На рисунке касательная к функции $f(x)$ параллельна оси $Ох$, следовательно, коэффициент $k = 0$, следовательно, $f"(x_0) = tg α = 0$. Точка $x_0$, в которой $f "(x_0) = 0$, называется экстремумом .

На рисунке изображён график функции $y=f(x)$ и касательная к этому графику, проведённая в точке с абсциссой $x_0$. Найдите значение производной функции $f(x)$ в точке $x_0$.

Касательная к графику возрастает, следовательно, $f"(x_0) = tg α > 0$

Для того, чтобы найти $f"(x_0)$, найдем тангенс угла наклона между касательной и положительным направлением оси $Ох$. Для этого достроим касательную до треугольника $АВС$.

Найдем тангенс угла $ВАС$. (Тангенсом острого угла в прямоугольном треугольнике называется отношение противолежащего катета к прилежащему катету.)

$tg BAC = {BC}/{AC} = {3}/{12}= {1}/{4}=0,25$

$f"(x_0) = tg ВАС = 0,25$

Ответ: $0,25$

Производная так же применяется для нахождения промежутков возрастания и убывания функции:

Если $f"(x) > 0$ на промежутке, то функция $f(x)$ возрастает на этом промежутке.

Если $f"(x) < 0$ на промежутке, то функция $f(x)$ убывает на этом промежутке.

На рисунке изображен график функции $y = f(x)$. Найдите среди точек $х_1,х_2,х_3…х_7$ те точки, в которых производная функции отрицательна.

В ответ запишите количество данных точек.

План:

1. Производная функции

2. Дифференциал функции

3. Приложение дифференциального исчисления к исследованию функции

Производная функции одной переменной

Пусть функция определена на некотором интервале . Аргументу дадим приращение : , тогда функция получит приращение . Найдем предел этого отношения при Если этот предел существует, то его называют производной функции . Производная функции имеет несколько обозначений: . Иногда в обозначении производной используется индекс , указывающий, по какой переменной взята производная.

Определение. Производной функции в точке называется предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю (если этот предел существует):

Определение. Функция , имеющая производную в каждой точке интервала , называется дифференцируемой в этом интервале.

Определение. Операция нахождения производной функции называется дифференцированием .

Значение производной функции в точке обозначается одним из символов: .

Пример. Найти производную функции в произвольной точке .

Решение . Значению даем приращение . Найдем приращение функции в точке : . Составим отношение . Перейдем к пределу: . Таким образом, .

Механический смысл производной . Так как или , т.е. скорость прямолинейного движения материальной точки в момент времени есть производная от пути по времени . В этом заключается механический смысл производной .

Если функция описывает какой-либо физический процесс, то производная есть скорость протекания этого процесса. В этом состоит физический смысл производной .

Геометрический смысл производной . Рассмотрим график непрерывной кривой , имеющий в точке невертикальную касательную. Найдем ее угловой коэффициент , где - угол касательной с осью . Для этого проведем через точку и графика секущую (рисунок 1).

Обозначим через - угол между секущей и осью . На рисунке видно, что угловой коэффициент секущей равен

При в силу непрерывности функции приращение тоже стремится к нулю; поэтому точка неограниченно приближается по кривой к точке , а секущая , поворачиваясь около точки , переходит в касательную. Угол , т.е. . Следовательно, , поэтому угловой коэффициент касательной равен .

Угловой коэффициент касательной к кривой

Это равенство перепишем в виде: , т.е. производная в точке равна угловому коэффициенту касательной к графику функции в точке, абсцисса которой равна . В этом заключается геометрический смысл производной .

Если точка касания имеет координаты (рисунок 2), угловой коэффициент касательной равен: .


Уравнение прямой проходящей через заданную точку в заданном направлении имеет вид: .

Тогда уравнение касательной записывается в виде: .

Определение. Прямая, перпендикулярная касательной в точке касания, называется нормалью к кривой .

Угловой коэффициент нормали равен: (так как нормаль перпендикулярна касательной).

Уравнение нормали имеет вид: , если .

Подставляя найденные значения и получаем уравнения касательной , т.е. .

Уравнение нормали: или .

Если функция имеет конечную производную в точке, то она дифференцируема в этой точке. Если функция дифференцируема в каждой точке интервала, то она дифференцируема в этом интервале.

Теорема 6.1 Если функция дифференцируема в некоторой точке, то она непрерывна в ней.

Обратная теорема неверна. Непрерывная функция может не иметь производной.

Пример. Функция непрерывна на интервале (рисунок 3).

Решение .

Производная этой функции равна:

В точке - функция не дифференцируема.

Замечание . На практике чаще всего приходится находить производные от сложных функций. Поэтому в таблице формул дифференцирования аргумент заменен на промежуточный аргумент .

Таблица производных

Постоянная величина

Степенная функция :

2) , в частности ;

Показательная функция :

3) , в частности ;

Логарифмическая функция :

4) , в частности, ;

Тригонометрические функции :

Обратные тригонометрические функции , , , :

Продифференцировать функцию это значит найти ее производную, то есть вычислить предел: . Однако определение предела в большинстве случаев представляет громоздкую задачу.

Если знать производные основных элементарных функций и знать правила дифференцирования результатов арифметических действий над этими функциями, то можно легко найти производные любых элементарных функций, согласно правил определения производных, хорошо известных из школьного курса.

Пусть функции и - две дифференцируемые в некотором интервале функции.

Теорема 6.2 Производная суммы (разности) двух функций равна сумме (разности) производных этих функций: .

Теорема справедлива для любого конечного числа слагаемых.

Пример. Найти производную функции .

Решение .

Теорема 6.3 Производная произведения двух функций равна произведению производной первого сомножителя на второй плюс произведение первого сомножителя на производную второго: .

Пример. Найти производную функции .

Решение .

Теорема 6.4 Производная частного двух функций , если равна дроби, числитель которой есть разность произведений знаменателя дроби на производную числителя и числителя дроби на производную знаменателя, а знаменатель есть квадрат прежнего знаменателя: .

Пример. Найти производную функции .

Решение . .

Для нахождения производной сложной функции надо производную данной функции по промежуточному аргументу умножить на производную промежуточного аргумента по независимому аргументу

Это правило остается в силе, если промежуточных аргументов несколько. Так, если , , , то

Пусть и, тогда - сложная функция с промежуточным аргументом и независимым аргументом .

Теорема 6.5 Если функция имеет производную в точке , а функция имеет производную в соответствующей точке , то сложная функция имеет производную в точке , которая находится по формуле . , Найти производную функции , заданную уравнением: .

Решение . Функция задана неявно. Продифференцируем уравнение по , помня, что : . Затем находим: .

Пусть функция определена в точкеи некоторой ее окрестности. Придадим аргументуприращениетакое, что точкапопадает в область определения функции. Функция при этом получит приращение.

ОПРЕДЕЛЕНИЕ. Производной функции в точке называется предел отношения приращения функции в этой точке к приращению аргумента , при(если этот предел существует и конечен), т.е.

Обозначают: ,,,.

Производной функции в точкесправа (слева) называется

(если этот предел существует и конечен).

Обозначают: ,– производнаяв точкесправа,

,– производнаяв точкеслева.

Очевидно, что справедлива следующая теорема.

ТЕОРЕМА. Функция имеет производную в точкетогда и только тогда, когда в этой точке существуют и равны между собой производные функции справа и слева. Причем

Следующая теорема устанавливает связь между существованием производной функции в точке и непрерывностью функции в этой точке.

ТЕОРЕМА (необходимое условие существования производной функции в точке). Если функция имеет производную в точке, то функцияв этой точке непрерывна.

ДОКАЗАТЕЛЬСТВО

Пусть существует . Тогда

,

где – бесконечно малая при.

Замечание

производной функции и обозначают

дифференцированием функции .

    ГЕОМЕТРИЧЕЧКИЙ И ФИЗИЧЕСКИЙ СМЫСЛ

1) Физический смысл производной . Если функция и ее аргументявляются физическими величинами, то производная– скорость изменения переменнойотносительно переменнойв точке. Например, если– расстояние, проходимое точкой за время, то ее производная– скорость в момент времени. Если– количество электричества, протекающее через поперечное сечение проводника в момент времени, то– скорость изменения количества электричества в момент времени, т.е. сила тока в момент времени.

2) Геометрический смысл производной.

Пусть – некоторая кривая,– точка на кривой.

Любая прямая, пересекающая не менее чем в двух точках называетсясекущей .

Касательной к кривой в точке называется предельное положение секущей , если точкастремится к, двигаясь по кривой.

Из определения очевидно, что если касательная к кривой в точке существует, то она единственная

Рассмотрим кривую (т.е. график функции). Пусть в точкеон имеет невертикальную касательную. Ее уравнение:(уравнение прямой, проходящей через точкуи имеющую угловой коэффициент).

По определению углового коэффициента

где – угол наклона прямойк оси.

Пусть – угол наклона секущейк оси, где. Так как– касательная, то при

Следовательно,

Таким образом, получили, что – угловой коэффициент касательной к графику функции в точке (геометрический смысл производной функции в точке). Поэтому уравнение касательной к кривой в точкеможно записать в виде

Замечание . Прямая, проходящая через точку перпендикулярно касательной, проведенной к кривой в точке, называетсянормалью к кривой в точке . Так как угловые коэффициенты перпендикулярных прямых связаны соотношением , то уравнение нормали к кривойв точкебудет иметь вид

, если .

Если же , то касательная к кривойв точкебудет иметь вид

а нормаль .

    УРАВНЕНИЯ КАСАТЕЛЬНОЙ И НОРМАЛИ

Уравнение касательной

Пусть функция задается уравнением y =f (x ), нужно написать уравнение касательной в точке x 0. Из определения производной:

y /(x )=limΔx →0Δy Δx

Δy =f (x x )−f (x ).

Уравнение касательной к графику функции: y =kx +b (k ,b =const ). Из геометрического смысла производной: f /(x 0)=tg α=k Т.к. x 0 и f (x 0)∈ прямой, то уравнение касательной записывается в виде: y f (x 0)=f /(x 0)(x x 0) , или

y =f /(x 0)·x +f (x 0)−f /(x 0)·x 0.

Уравнение нормали

Нормаль - это перпендикуляр к касательной (см. рисунок). Исходя из этого:

tg β=tg (2π−α)=ctg α=1tg α=1f /(x 0)

Т.к. угол наклона нормали -- это угол β1, то имеем:

tg β1=tg (π−β)=−tg β=−1f /(x ).

Точка (x 0,f (x 0))∈ нормали, уравнение примет вид:

y f (x 0)=−1f /(x 0)(x x 0).

ДОКАЗАТЕЛЬСТВО

Пусть существует . Тогда

,

где – бесконечно малая при.

Но это означает, что непрерывна в точке(см. геометрическое определение непрерывности). ∎

Замечание . Непрерывность функции в точке не является достаточным условием существования производной этой функции в точке. Например, функциянепрерывна, но не имеет производной в точке. Действительно,

и, следовательно, не существует.

Очевидно, что соответствие является функцией, определенной на некотором множестве. Ее называютпроизводной функции и обозначают

Операцию нахождения для функции ее производной функции называютдифференцированием функции .

    Производная суммы и разности

Пусть даны функции f(x) и g(x), производные которых нам известны. К примеру, можно взять элементарные функции, которые рассмотрены выше. Тогда можно найти производную суммы и разности этих функций:

    (f + g)’ = f ’ + g ’

    (f − g)’ = f ’ − g ’

Итак, производная суммы (разности) двух функций равна сумме (разности) производных. Слагаемых может быть больше. Например, (f + g + h)’ = f ’ + g ’ + h ’.

Строго говоря, в алгебре не существует понятия «вычитание». Есть понятие «отрицательный элемент». Поэтому разность f − g можно переписать как сумму f + (−1) · g, и тогда останется лишь одна формула - производная суммы.

В координатной плоскости хОу рассмотрим график функции y=f (x) . Зафиксируем точку М(х 0 ; f (x 0)) . Придадим абсциссе х 0 приращение Δх . Мы получим новую абсциссу х 0 +Δх . Это абсцисса точки N , а ордината будет равна f (х 0 +Δх ). Изменение абсциссы повлекло за собой изменение ординаты. Это изменение называют приращение функции и обозначают Δy .

Δy=f (х 0 +Δх) — f (x 0). Через точки M и N проведем секущую MN , которая образует угол φ с положительным направлением оси Ох . Определим тангенс угла φ из прямоугольного треугольника MPN .

Пусть Δх стремится к нулю. Тогда секущая MN будет стремиться занять положение касательной МТ , а угол φ станет углом α . Значит, тангенс угла α есть предельное значение тангенса угла φ :

Предел отношения приращения функции к приращению аргумента, при стремлении последнего к нулю, называют производной функции в данной точке:

Геометрический смысл производной заключается в том, что численно производная функции в данной точке равна тангенсу угла, образованного касательной, проведенной через эту точку к данной кривой, и положительным направлением оси Ох :

Примеры.

1. Найти приращение аргумента и приращение функции y=x 2 , если начальное значение аргумента было равно 4 , а новое -4,01 .

Решение.

Новое значение аргумента х=х 0 +Δx . Подставим данные: 4,01=4+Δх, отсюда приращение аргумента Δх =4,01-4=0,01. Приращение функции, по определению, равно разности между новым и прежним значениями функции, т.е. Δy=f (х 0 +Δх) - f (x 0). Так как у нас функция y=x 2 , то Δу =(х 0 +Δx) 2 — (х 0) 2 =(х 0) 2 +2x 0 · Δx+(Δx) 2 — (х 0) 2 =2x 0 · Δx+(Δx) 2 =

2 · 4 · 0,01+(0,01) 2 =0,08+0,0001=0,0801.

Ответ: приращение аргумента Δх =0,01; приращение функции Δу =0,0801.

Можно было приращение функции найти по-другому: Δy =y (х 0 +Δx) -y (х 0)=у(4,01) -у(4)=4,01 2 -4 2 =16,0801-16=0,0801.

2. Найти угол наклона касательной к графику функции y=f (x) в точке х 0 , если f "(х 0) = 1 .

Решение.

Значение производной в точке касания х 0 и есть значение тангенса угла наклона касательной (геометрический смысл производной). Имеем: f "(х 0) = tgα = 1 → α = 45°, так как tg45°=1.

Ответ: касательная к графику данной функции образует с положительным направлением оси Ох угол, равный 45° .

3. Вывести формулу производной функции y=x n .

Дифференцирование — это действие нахождения производной функции.

При нахождении производных применяют формулы, которые были выведены на основании определения производной, так же, как мы вывели формулу производной степени: (x n)" = nx n-1 .

Вот эти формулы.

Таблицу производных легче будет заучить, проговаривая словесные формулировки:

1. Производная постоянной величины равна нулю.

2. Икс штрих равен единице.

3. Постоянный множитель можно вынести за знак производной.

4. Производная степени равна произведению показателя этой степени на степень с тем же основанием, но показателем на единицу меньше.

5. Производная корня равна единице, деленной на два таких же корня.

6. Производная единицы, деленной на икс равна минус единице, деленной на икс в квадрате.

7. Производная синуса равна косинусу.

8. Производная косинуса равна минус синусу.

9. Производная тангенса равна единице, деленной на квадрат косинуса.

10. Производная котангенса равна минус единице, деленной на квадрат синуса.

Учим правила дифференцирования .

1. Производная алгебраической суммы равна алгебраической сумме производных слагаемых.

2. Производная произведения равна произведению производной первого множителя на второй плюс произведение первого множителя на производную второго.

3. Производная «у», деленного на «вэ» равна дроби, в числителе которой "у штрих умноженный на «вэ» минус «у, умноженный на вэ штрих», а в знаменателе — «вэ в квадрате».

4. Частный случай формулы 3.

Поделитесь с друзьями или сохраните для себя:

Загрузка...