Равновесие тел. Виды равновесия тел. «Формирование условий равновесия твёрдого тела» в курсе физики основной школы Условие равновесия материальной точки и твердого тела

Тело находится в состоянии покоя (или движется равномерно и прямолинейно), если векторная сумма всех сил, действующих на него, равна нулю. Говорят, что силы уравновешивают друг друга. Когда мы имеем дело с телом определенной геометрической формы, при вычислении равнодействующей силы можно все силы прикладывать к центру масс тела.

Условие равновесия тел

Чтобы тело, которое не вращается, находилось в равновесии, необходимо, чтобы равнодействующая всех сил, действующий на него, была равна нулю.

F → = F 1 → + F 2 → + . . + F n → = 0 .

На рисунке выше изображено равновесие твердого тела. Брусок находится в состоянии равновесия под действием трех действующих не него сил. Линии действия сил F 1 → и F 2 → пересекаются в точке O . Точка приложения силы тяжести - центр масс тела C . Данные точки лежат на одной прямой, и при вычислении равнодействующей силы F 1 → , F 2 → и m g → приводятся к точке C .

Условия равенства нулю равнодействующей всех сил недостаточно, если тело может вращаться вокруг некоторой оси.

Плечом силы d называется длина перпендикуляра, проведенного от линии действия силы к точке ее приложения. Момент силы M - произведение плеча силы на ее модуль.

Момент силы стремится повернуть тело вокруг оси. Те моменты, которые поворачивают тело против часовой стрелки, считаются положительными. Единица измерения момента силы в международной системе CИ - 1 Н ь ю т о н м е т р.

Определение. Правило моментов

Если алгебраическая сумма всех моментов, приложенных к телу относительно неподвижной оси вращения, равна нулю, то тело находится в состоянии равновесия.

M 1 + M 2 + . . + M n = 0

Важно!

В общем случае для равновесия тел необходимо выполнение двух условий: равенство нулю равнодействующей силы и соблюдение правила моментов.

В механике есть разные виды равновесия. Так, различают устойчивое и неустойчивое, а также безразличное равновесие.

Типичный пример безразличного равновесия - катящееся колесо (или шар), которое, если остановить его в любой точке, окажется в состоянии равновесия.

Устойчивое равновесие - такое равновесие тела, когда при его малых отклонениях возникают силы или моменты сил, которые стремятся вернуть тело в равновесное состояние.

Неустойчивое равновесие - состояние равновесия, при малом отклонении от которого силы и моменты сил стремятся вывести тело из равновесия еще больше.

На рисунке выше положение шара (1) - безразличное равновесие, (2) - неустойчивое равновесие, (3) - устойчивое равновесие.

Тело с неподвижной осью вращения может находится в любом из описанных положений равновесия. Если ось вращения проходит через центр масс, возникает безразличное равновесие. При устойчивом и неустойчивом равновесии центр масс располагается на вертикальной прямой, которая проходит через ось вращения. Когда центр масс находится ниже оси вращения, равновесие является устойчивым. Иначе - наоборот.

Особый случай равновесия - равновесие тела на опоре. При этом упругая сила распределяется по всему основанию тела, а не проходит через одну точку. Тело покоится в равновесии, когда вертикальная линия, проведенная через центр масс, пересекает площадь опоры. Иначе, если линия из центра масс не попадает в контур, образованный линиями, соединяющими точки опоры, тело опрокидывается.

Пример равновесия тела на опоре - знаменитая Пизанская башня. По легенде с нее сбрасывал шары Галилео Галилей, когда проводил свои опыты по изучению свободного падения тел.

Линия, проведенная из центра масс башни пересекает основание приблизительно в 2,3 м от его центра.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

ОПРЕДЕЛЕНИЕ

Устойчивое равновесие - это равновесие, при котором тело, выведенное из положения равновесия и предоставленное самому себе, возвращается в прежнее положение.

Это происходит, если при небольшом смещении тела в любом направлении от первоначального положения равнодействующая сил, действующих на тело, становится отличной от нуля и направлена к положению равновесия. Например, шарик, лежащий на дне сферического углубления (рис.1 а).

ОПРЕДЕЛЕНИЕ

Неустойчивое равновесие - это равновесие, при котором тело, выведенное из положения равновесия и предоставленное самому себе, будет еще больше отклоняться от положения равновесия.

В данном случае при небольшом смещении тела из положения равновесия равнодействующая приложенных к нему сил отлична от нуля и направлена от положения равновесия. Примером может служить шарик, находящийся в верхней точке выпуклой сферической поверхности (ри.1 б).

ОПРЕДЕЛЕНИЕ

Безразличное равновесие - это равновесие, при котором тело, выведенное из положения равновесия и предоставленное самому себе, не меняет своего положения (состояния).

В этом случае при небольших смещениях тела из первоначального положения равнодействующая приложенных к телу сил остается равной нулю. Например, шарик, лежащий на плоской поверхности (рис.1,в).

Рис.1. Различные типы равновесия тела на опоре: а) устойчивое равновесие; б) неустойчивое равновесие; в) безразличное равновесие.

Статическое и динамическое равновесие тел

Если в результате действия сил тело не получает ускорения, оно может находиться в состоянии покоя или двигаться равномерно прямолинейно. Поэтому можно говорить о статическом и динамическом равновесии.

ОПРЕДЕЛЕНИЕ

Статическое равновесие - это такое равновесие, когда под действием приложенных сил тело находится в состоянии покоя.

Динамическое равновесие - это такое равновесие, когда по действием сил тело не изменяет своего движения.

В состоянии статического равновесия находится подвешенный на тросах фонарь, любое строительное сооружение. В качестве примера динамического равновесия можно рассматривать колесо, которое катится по плоской поверхности при отсутствии сил трения.

Очевидно, что тело может покоиться только по отношению к одной определенной системе координат. В статике изучают условия равновесия тел именно в такой системе. При равновесии скорости и ускорения всех участков (элементов) тела равны нулю. Учитывая это, можно установить одно из необходимых условии равновесия тел, используя теорему о движении центра масс (см. § 7.4).

Внутренние силы не влияют на движение центра масс, так как их сумма всегда равна нулю. Определяют движение центра масс тела (или системы тел) лишь внешние силы. Так как при равновесии тела ускорение всех его элементов равно нулю, то равно нулю и ускорение центра масс. Но ускорение центра масс определяется векторной суммой внешних сил, приложенных к телу (см. формулу (7.4.2)). Поэтому при равновесии эта сумма должна равняться нулю.

Действительно, если сумма внешних сил F i равна нулю, то и ускорение центра масс а c = 0. Отсюда следует, что скорость центра масс с = const. Если в начальный момент скорость центра масс равнялась нулю, то и в дальнейшем центр масс остается в покое.

Полученное условие неподвижности центра масс является необходимым (но, как мы скоро увидим, недостаточным) условием равновесия твердого тела. Это так называемое первое условие равновесия. Его можно сформулировать следующим образом.

Для равновесия тела необходимо, чтобы сумма внешних сил, приложенных к телу, была равна нулю:

Если сумма сил равна нулю, то равна нулю и сумма проекций сил_на все три оси координат. Обозначая внешние силы через 1 , 2 , 3 и т. д., получим три уравнения, эквивалентных одному векторному уравнению (8.2.1):

Для того чтобы тело покоилось, необходимо еще, чтобы начальная скорость центра масс была равна нулю.

Второе условие равновесия твердого тела

Равенство нулю суммы внешних сил, действующих на тело, необходимо для равновесия, но недостаточно. При выполнении этого условия лишь центр масс с необходимостью будет покоиться. В этом нетрудно убедиться.

Приложим к доске в разных точках равные по модулю и противоположные по направлению силы так, как показано на рисунке 8.1 (две такие силы называют парой сил). Сумма этих сил равна нулю: + (-) = 0. Но доска будет поворачиваться. В покое находится только центр масс, если его начальная скорость (скорость до приложения сил) была равна нулю.

Рис. 8.1

Точно так же две одинаковые по модулю и противоположные по направлению силы поворачивают руль велосипеда или автомобиля (рис. 8.2) вокруг оси вращения.

Рис. 8.2

Нетрудно понять, в чем здесь дело. Любое тело находится в равновесии, когда сумма всех сил, действующих на каждый его элемент, равна нулю. Но если сумма внешних сил равна нулю, то сумма всех сил, приложенных к каждому элементу тела, может быть и не равной нулю. В этом случае тело не будет находиться в равновесии. В рассмотренных примерах доска и руль потому и не находятся в равновесии, что сумма всех сил, действующих на отдельные элементы этих тел, не равна нулю. Тела вращаются.

Выясним, какое еще условие, кроме равенства нулю суммы внешних сил, должно выполняться, чтобы тело не вращалось и находилось в равновесии. Для этого воспользуемся основным уравнением динамики вращательного движения твердого тела (см. § 7.6):

Напомним, что в формуле (8.2.3)

представляет собой сумму моментов приложенных к телу внешних сил относительно оси вращения, a J - момент инерции тела относительно той же оси.

Если , то и Р = 0, т. е. тело не имеет углового ускорения, и, значит, угловая скорость тела

Если в начальный момент угловая скорость равнялась нулю, то и в дальнейшем тело не будет совершать вращательное движение. Следовательно, равенство

(при ω = 0) является вторым условием, необходимым для равновесия твердого тела.

При равновесии твердого тела сумма моментов всех внешних сил, действующих на него относительно любой оси (1), равна нулю .

В общем случае произвольного числа внешних сил условия равновесия твердого тела запишутся в виде:

Эти условия необходимы и достаточны для равновесия любого твердого тела. Если они выполняются, то векторная сумма сил (внешних и внутренних), действующих на каждый элемент тела, равна нулю.

Равновесие деформируемых тел

Если тело не абсолютно твердое, то под действием приложенных к нему внешних сил оно может не находиться в равновесии, хотя сумма внешних сил и сумма их моментов относительно любой оси равна нулю. Это происходит потому, что под действием внешних сил тело может деформироваться и в процессе деформации сумма всех сил, действующих на каждый его элемент, в этом случае не будет равна нулю.

Приложим, например, к концам резинового шнура две силы, равные по модулю и направленные вдоль шнура в противоположные стороны. Под действием этих сил шнур не будет находиться в равновесии (шнур растягивается), хотя сумма внешних сил равна нулю и равна нулю сумма их моментов относительно оси, проходящей через любую точку шнура.

При деформации тел, кроме того, происходит изменение плеч сил и, следовательно, изменение моментов сил при заданных силах. Отметим еще, что только у твердых тел можно переносить точку приложения силы вдоль линии действия силы в любую другую точку тела. Это не меняет момента силы и внутреннего состояния тела.

В реальных телах переносить точку приложений силы вдоль линии ее действия можно лишь тогда, когда деформации, которые вызывает эта сила, малы и ими можно пренебречь. В этом случае изменение внутреннего состояния тела при переносе точки приложения силы несущественно. Если же деформациями пренебречь нельзя, то такой перенос недопустим. Так, например, если вдоль резинового бруска к двум его концам приложить две равные по модулю и прямо противоположные по направлению силы 1 и 2 (рис. 8.3, а), то брусок будет растянут. При переносе точек приложения этих сил вдоль линии действия в противоположные концы бруска (рис. 8.3, б) те же силы будут сжимать брусок и его внутреннее состояние окажется иным.

Рис. 8.3

Для расчета равновесия деформируемых тел нужно знать их упругие свойства, т. е. зависимость деформаций от действующих сил. Эту сложную задачу мы решать не будем. Простые случаи поведения деформируемых тел будут рассмотрены в следующей главе.

(1) Мы рассматривали моменты сил относительно реальной оси вращения тела. Но можно доказать, что при равновесии тела сумма моментов сил равна нулю относительно любой оси (геометрической линии), в частности относительно трех осей координат или относительно оси, проходящей через центр масс.

Статика.

Раздел механики, в котором изучаются условия равновесия механических систем под действием приложенных к ним сил и моментов.

Равновесие сил.

Механическое равновесие , также известно как статическое равновесие, — состояние тела, находящегося в покое, или движущегося равномерно, в котором сумма сил и моментов, действующих на него, равна нулю

Условия равновесия твердого тела.

Необходимым и достаточными условиями равновесия свободного твердого тела является равенство нулю векторной суммы всех внешних сил, действующих на тело, равенство нулю суммы всех моментов внешних сил относительно произвольной оси, равенство нулю начальной скорости поступательного движения тела и условие равенства нулю начальной угловой скорости вращения.

Виды равновесия.

Равновесие тела устойчиво , если при любых допускаемых внешними связями малых отклонениях от положения равновесия в системе возникают силы или моменты сил, стремящиеся возвратить тело в исходное состояние.

Равновесие тела неустойчиво , если хотя бы при некоторых допускаемых внешними связями сколько угодно малых отклонениях от положения равновесия в системе возникают силы или моменты сил, стремящиеся еще больше отклонить тело от исходного состояния равновесия.

Равновесие тела называется безразличным , если при любых допускаемых внешними связями малых отклонениях от положения равновесия в системе возникают силы или моменты сил, стремящиеся возвратить тело в исходное состояние

Центр тяжести твердого тела.

Центром тяжести тела называется точка, относительно которой суммарный момент сил тяжести, действующих на систему, равен нулю. Например, в системе, состоящей из двух одинаковых масс, соединённых несгибаемым стержнем, и помещённой в неоднородное гравитационное поле (например, планеты), центр масс будет находиться в середине стержня, в то время как центр тяжести системы будет смещён к тому концу стержня, который находится ближе к планете (ибо вес массы P = m·g зависит от параметра гравитационного поля g), и, вообще говоря, даже расположен вне стержня.

В постоянном параллельном (однородном) гравитационном поле центр тяжести всегда совпадает с центром масс. Поэтому на практике эти два центра почти совпадают (так как внешнее гравитационное поле в некосмических задачах может считаться постоянным в пределах объёма тела).

По этой же причине понятия центр масс и центр тяжести совпадают при использовании этих терминов в геометрии, статике и тому подобных областях, где применение его по сравнению с физикой можно назвать метафорическим и где неявно предполагается ситуация их эквивалентности (так как реального гравитационного поля нет и не имеет смысла учёт его неоднородности). В этих применениях традиционно оба термина синонимичны, и нередко второй предпочитается просто в силу того, что он более старый.

Поделитесь с друзьями или сохраните для себя:

Загрузка...