Азотная кислота. Соли азотной кислоты. Получение и применение азотной кислоты презентация к уроку по химии (9 класс). Презентация на тему "азотная кислота" Производство азотной кислоты в промышленности презентация

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Получение азотной кислоты ПОДГОТОВИЛА: ученица 9 класса б гимназии №1 им. Ю.А.Гагарина Михальченко Ксения.

Физические свойства азотной кислоты Агрегатное состояние: жидкое Цвет: бесцветный Запах: резкий Плотность: 1,5 2 г/см 3 Не ограничено растворимая в воде Кипение: +82,6 °C с частичным разложением; Плавление: −41,59 °С

Химические свойства азотной кислоты HNO 3 - сильная одноосновная кислота Высококонцентрированная HNO 3 имеет обычно бурую окраску вследствие происходящего на свету процесса разложения 4 HNO 3 4NO 2 + 2 H 2 O + O 2 При нагревании азотная кислота распадается по той же реакции. Азотную кислоту можно перегонять (без разложения) только при пониженном давлении. Азотная кислота в любой концентрации проявляет свойства кислоты-окислителя.

Важнейшие соединения Смесь трех объёмов соляной кислоты и одного объёма азотной называется «Царской водкой». Царская водка растворяет большинство металлов, в том числе золото и платину. Её сильные окислительные способности обусловлены образующимся атомарным хлором и хлоридом нитрозила: Нитраты – это соли азотной кислоты. Нитраты получают действием азотной кислоты HNO 3 на металлы, оксиды, гидроксиды, соли. Практически все нитраты хорошо растворимы в воде. Нитраты устойчивы при обычной температуре. Они обычно плавятся при относительно низких температурах (200-600 °C), зачастую с разложением.

Нахождение в природе В природе в свободном состоянии не встречается, а всегда только в форме азотнокислых солей. Так, в виде азотнокислого аммония в воздухе и дождевой воде, особенно после гроз, затем в виде азотнокислого натра в чилийской или перуанской селитре и азотнокислых калия и кальция в верхних слоях пашни, на стенах конюшен, в низменностях Ганга и других рек Индии. * Сели́тра - тривиальное название для минералов, содержащих нитраты щелочных и щелочноземельных металлов.

Виртуальный эксперимент Внимание! Азотная кислота и её пары очень вредны, поэтому работать с ней следует очень аккуратно.

Получение азотной кислоты Различают производство слабой (разбавленной) азотной кислоты и производство концентрированной азотной кислоты. Процесс производства разбавленной азотной кислоты складывается из трех стадий: 1) конверсии аммиака с целью получения оксида азота 4NH 3 + 5О 2 → 4NO + 6Н 2 О 2) окисления оксида азота до диоксида азота 2NO + О 2 → 2NO 2 3) абсорбции оксидов азота водой 4NO 2 + О 2 + 2Н 2 О → 4HNO 3 Суммарная реакция образования азотной кислоты выражается NH 3 + 2О 2 → HNO 3 + Н 2 О

Применение азотной кислоты для получения: азотных удобрений; Лекарств Красителей Взрывчатых веществ Пластичных масс Искусственных волокон «Дымящая» азотная кислота применяется в ракетной технике в качестве окислителя ракетного топлива крайне редко в фотографии - разбавленная - подкисление некоторых тонирующих растворов; в станковой графике- для травления печатных форм (офортных досок, цинкографических типографских форм и магниевых клише). в ювелирном деле - основной способ определения золота в золотом сплаве;


По теме: методические разработки, презентации и конспекты

приложение к уроку «Азотная кислота: состав молекулы, физические и химические свойства". «Азотная кислота: состав молекулы, физические и хими- ческие свойства". Приложение к уроку "Азотная кислота:

Приложение к уроку, заполняемое учащимися в учебное портфолио....


Физические и физико-химические свойства Молекула имеет плоскую структуру (длины связей в нм): азот в азотной кислоте четырёхвалентен, степень окисления +5. азотная кислота - бесцветная, дымящая на воздухе жидкость, концентрированная азотная кислота обычно окрашена в желтый цвет, (высококонцентрированная HNO3 имеет обычно бурую окраску вследствие происходящего на свету процесса разложения: 4HNO3 == 4NO2  + 2H2O + O2 ) температура плавления -41,59°С, кипения +82,6°С с частичным разложением. растворимость азотной кислоты в воде неограничена. В водных растворах она практически полностью диссоциирует на ионы. С водой образует азеотропную смесь.


Химические свойства При нагревании азотная кислота распадается по той же реакции. 4HNO3 == 4NO2  + 2H2O + O2 ) HNO3 как сильная одноосновная кислота взаимодействует: а) с основными и амфотерными оксидами: CuO + 2HNO3 = Cu(NO3)2 + H2O ZnO + 2HNO3 = Zn(NO3)2 + H2O б) с основаниями: KOH + HNO3 = KNO3 + H2O в) вытесняет слабые кислоты из их солей: CaCO3 + 2HNO3 = Ca(NO3)2 + H2O + CO2  При кипении или под действием света азотная кислота частично разлагается: 4HNO3 = 4NO2  + O2  + 2H2O


Азотная кислота в любой концентрации проявляет свойства кислоты-окислителя, при этом азот восстанавливается до степени окисления от +4 до -3. Глубина восстановления зависит в первую очередь от природы восстановителя и от концентрации азотной кислоты. Азотная кислота в любой концентрации проявляет свойства кислоты-окислителя, при этом азот восстанавливается до степени окисления от +4 до -3. Глубина восстановления зависит в первую очередь от природы восстановителя и от концентрации азотной кислоты. Как кислота-окислитель, HNO3 взаимодействует: а) с металлами, стоящими в ряду напряжений правее водорода: Концентрированная HNO3 Cu + 4HNO3(60%) = Cu(NO3)2 + 2NO2  + 2H2O Разбавленная HNO3 3Cu + 8HNO3(30%) = 3Cu(NO3)2 + 2NO  + 4H2O б) с металлами, стоящими в ряду напряжений левее водорода: Zn + 4HNO3(60%) = Zn(NO3)2 + 2NO2  + 2H2O 3Zn + 8HNO3(30%) = 3Zn(NO3)2 + 2NO  + 4H2O 4Zn + 10HNO3(20%) = 4Zn(NO3) 2 + N2O  + 5H2O 5Zn + 12HNO3 = 5Zn(NO3) 2 + N2  + 6H2O д 4Zn + 10HNO3(3%) = 4Zn(NO3)2 + NH4NO3 + 3H2O Все приведенные выше уравнения отражают только доминирующий ход реакции. Это означает, что в данных условиях продуктов данной реакции больше, чем продуктов других реакций, например, при взаимодействии цинка с азотной кислотой (массовая доля азотной кислоты в растворе 0,3) в продуктах будет содержаться больше всего NO, но также будут содержаться (только в меньших количествах) и NO2, N2O, N2 и NH4NO3.


Нитраты HNO3 - сильная кислота. Её соли - нитраты - получают действием HNO3 на металлы, оксиды, гидроксиды или карбонаты. Все нитраты хорошо растворимы в воде. Соли азотной кислоты - нитраты - при нагревании необратимо разлагаются, продукты разложения определяются катионом: а) нитраты металлов, стоящих в ряду напряжений левее магния: 2NaNO3 = 2NaNO2 + O2 б) нитраты металлов, расположенных в ряду напряжений между магнием и медью: 4Al(NO3)3 = 2Al2O3 + 12NO2 + 3O2 в) нитраты металлов, расположенных в ряду напряжений правее ртути: 2AgNO3 = 2Ag + 2NO2 + O2 г) нитрат аммония: NH4NO3 = N2O + 2H2O Нитраты в водных растворах практически не проявляют окислительных свойств, но при высокой температуре в твердом состоянии нитраты - сильные окислители, например: Fe + 3KNO3 + 2KOH = K2FeO4 + 3KNO2 + H2O - при сплавлении твердых веществ.


Соли азотной кислоты - нитраты - широко используются как удобрения. При этом практически все нитраты хорошо растворимы в воде, поэтому в виде минералов их в природе чрезвычайно мало; исключение составляют чилийская (натриевая) селитра и индийская селитра (нитрат калия). Большинство нитратов получают искусственно. С азотной кислотой не реагируют стекло, фторопласт-4.


Производство азотной кислоты Промышленное производство. Современный способ её производства основан на каталитическом окислении синтетического аммиака на платино-родиевых катализаторах до смеси оксидов азота, с дальнейшим поглощением их водой Промышленный способ получения HNO3 состоит из следующих основных стадий: 1. окисления аммиaка в NO в присутствии платино-родиевого катализатора: 4NH3 + 5O2 = 4NO + 6H2O 2. окисления NO в NO2 на холоду под давлением (10 ат, 1 МПа): 2NO + O2 = 2NO2 3. поглощения NO2 водой в присутствии кислорода: 4NO2 + 2H2O + O2= 4HNO3 Массовая доля HNO3 в получаемом растворе составляет около 0,6. Изредка применяемый дуговой способ получения азотной кислоты отличается только первой стадией, которая состоит в пропускании воздуха через пламя электрической дуги: N2 + O2 = 2NO


Впервые азотную кислоту получили алхимики, нагревая смесь селитры и железного купороса: Впервые азотную кислоту получили алхимики, нагревая смесь селитры и железного купороса: 4KNO3 + 2(FeSO4 · 7H2O) (t°) → Fe2O3 + 2K2SO4 + 2HNO3 + NO2 + 13H2O Чистую азотную кислоту получил впервые Иоганн Рудольф Глаубер, действуя на селитру концентрированной серной кислотой: KNO3 + H2SO4(конц.) (t°) → KHSO4 + HNO3 Дальнейшей дистилляцией может быть получена т. н. «дымящая азотная кислота», практически не содержащая воды.


- Это вещество было описано арабским химиком в VIII веке Джабиром ибн Хайяном (Гебер) в его труде «Ямщик мудрости», а с ХV века это вещество добывалось для производственных целей. - Благодаря этому веществу русский учёный В.Ф. Петрушевский в 1866 году впервые получил динамит. - Это вещество – прародитель большинства взрывчатых веществ (например, тротила, или тола). - Это вещество является компонентом ракетного топлива, его использовали для двигателя первого в мире советского реактивного самолёта БИ – 1. - Это вещество в смеси с соляной кислотой растворяет платину и золото, признанное «царём» металлов. Сама смесь, состоящая из 1-ого объёма этого вещества и 3-ёх объёмов соляной кислоты, называется «царской водкой».

Работа может использоваться для проведения уроков и докладов по предмету "Химия"

Готовые презентации по химии включают в себя слайды, которые учителя могут использовать на уроках химии для для изучения химических свойств веществ в интерактивной форме. Представленные презентации по химии помогут учителям в учебном процессе. На нашем сайте Вы можете скачать готовые презентации по химии для 7,8,9,10,11 класса.

«Жирные кислоты» - Просвет сосуда. TxA2. Физическое воздействие, Тромбин, TNFa, АФК, IL-1b. Арахидоновая кислота и другие полиеновые жирные кислоты как сигнальные молекулы. 3. 1. Липидомика и липидология. 5o. Построение системы. D 6 -десатурация. Ферменты, белки. n-6. С.Д. Варфоломеев, А.Т. Мевх, П.В. Вржещ и др.

«Азотная кислота» - 2. Взаимодействие азотной кислоты с металлами. 2HNO3 + Zn(OH)2 = Zn(NO3)2 + 2H2O. Азотная кислота по: Азотная кислота (HNO3) Классификация. N20. Составьте уравнения реакций азотной кислоты: Валентность азота. Взаимодействие азотной кислоты с металлами. Рассмотрите превращения в свете ОВР. 1. Контактное окисление аммиака до оксида азота (II):

«Угольная кислота и её соли» - Правильные ответы: 1 вариант – 1, 2, 3, 4, 8, 10 2 вариант – 3, 5, 6, 7, 9, 10. Ввести в схему. О каком явлении идет речь? Очень ядовит Не горит и не поддерживает горения Используется в металлургии при выплавке чугуна Образуется при полном сгорании топлива В нем горит магний Типичный кислотный оксид.

«Производство серной кислоты» - Печь для обжига в «кипящем слое». Очистка от крупной пыли. Серная кислота сверху, оксид серы (VI) снизу. II стадия. H2SO4. I стадия: Обжиг пирита. 1. Горения 2. Экзотермическая 3. Гетерогенная 4. Некаталитическая 5. Необратимая 6. Окислительно-восстановительная. МОУ Навлинская СОШ №1 Учитель химии Кожемяко Г.С.

«Угольная кислота» - 14. t. 6. 7. 2NaOH. 11. Угольной кислоте соответствуют: 16. 8.

«Серная кислота урок» - Отрицательное воздействие на среду". Как можно распознать серную кислоту? Каковы физические свойства серной кислоты? Какие степени окисления характерны для атома серы? Цель урока: Какие индикаторы позволяют обнаружить кислоты? Девиз урока: Применение серной кислоты. Кислотный дождь. С какими металлами взаимодействует концентрированная серная кислота?

Слайд 2

Слайд 3

Высококонцентрированная HNO3 имеет обычно бурую окраску вследствие происходящего на свету процесса разложения:

Слайд 4

HNO3 как сильная одноосновная кислота взаимодействует: а) с основными и амфотерными оксидами: б) с основаниями: в) вытесняет слабые кислоты из их солей:

Слайд 5

Азотная кислота в любой концентрации проявляет свойства кислоты-окислителя, при этом азот восстанавливается до степени окисления от +4 до −3. Глубина восстановления зависит в первую очередь от природы восстановителя и от концентрации азотной кислоты. Как кислота-окислитель, HNO3 взаимодействует: а) с металлами, стоящими в ряду б) с металлами, стоящими в ряду напряжений левее водорода

Слайд 6

Азотная кислота окисляет неметаллы, при этом азот обычно восстанавливается до NO или NO2:

Слайд 7

С Ag и Ptазотная кислота, даже концентрированная не взаимодействует. Fe, Al, Crхолодной концентрированной азотной кислотой пассивируются. (Fe) (Al) (Na)

Слайд 8

Нитраты

Азотная кислота является сильной кислотой. Её соли - нитраты - получают действием HNO3 на металлы, оксиды, гидроксиды или карбонаты. Все нитраты хорошо растворимы в воде. Нитрат-ион в воде не гидролизуется. Соли азотной кислоты при нагревании необратимо разлагаются, причём состав продуктов разложения определяется катионом: а) нитраты металлов, стоящих в ряду напряжений левее магния: б) нитраты металлов, расположенных в ряду напряжений между магнием и медью: в) нитраты металлов, расположенных в ряду напряжений правее ртути: г) нитрат аммония:

Слайд 9

Нитрат калия- бесцветные кристаллы Значительно менее гигроскопична по сравнению с натриевой, поэтому широко применяется в пиротехнике как окислитель. При нагревании выше 334,5ºС плавится, выше этой температуры разлагается с выделением кислорода. Нитрат натрия- применяется как удобрение; в стекольной, металлообрабатывающей промышленности; для получения взрывчатых веществ, ракетного топлива и пиротехнических смесей.

Слайд 10

Нитрат аммония- Кристаллическое вещество белого цвета. Температура плавления 169,6 °C, при нагреве выше этой температуры начинается постепенное разложение вещества, а при температуре 210°С происходит полное разложение.

Слайд 11

Нитраты в водных растворах практически не проявляют окислительных свойств, но при высокой температуре в твердом состоянии являются сильными окислителями, например, при сплавлении твердых веществ: Цинк и алюминий в щелочном растворе восстанавливают нитраты до NH3:

Слайд 12

Применение азотной кислоты

  • Слайд 13

    Слайд 14

    Производство азотной кислоты

    Сырье: аммиак, воздух. Вспомогательные материалы: катализаторы (платинородиевые сетки), вода, концентрированная серная кислота. Особенности технологического процесса: Производство непрерывное. Температура поддерживается за счет выделяемой теплоты. Смесь, содержащую NO, охлаждают в котле-утилизаторе. NO2 в поглотительной башне по принципу противотока смешивается с водой (массовая доля 60 %). Концентрированную азотную кислоту получают при добавлении концентрированной серной кислоты.

    Слайд 15

    Получение азотной кислоты в промышленности

    1) Окисление аммиака на платиновом катализаторе до NO 4NH3 + 5O2 → 4NO + 6H2O (Условия: катализатор – Pt, t = 500˚С) 2) Окисление кислородом воздуха NO до NO2 2NO + O2 → 2NO2 3) Адсорбция (поглощение) NO2 водой в присутствии избытка кислорода 4NO2 + О2 + 2H2O ↔ 4HNO3 или 3NO2 + H2O ↔ 2HNO3+NO (без избытка кислорода)

    Слайд 16

    Посмотреть все слайды

    Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


    Подписи к слайдам:

    Азотная кислота. Соли азотной кислоты. Получение и применение азотной кислоты Урок 43

    Азотная кислота - бесцветная, дымящая на воздухе жидкость с резким запахом. Формула: HNO 3 Техническая концентрированная HNO 3 Структурная формула: Валентность азота: IV Степень окисления: +5

    Получение азотной кислоты а) В промышленности: 4NH 3 + 5O 2 = 4NO + 6H 2 O Pt- Rh t 0 C 2NO + O 2 = 2NO 2 4NO 2 + 2H 2 O + O 2 ⇄ 4HNO 3 б) В лаборатории: NaNO 3 + H 2 SO 4 (конц.) = HNO 3 + NaHSO 4 t 0 C

    Промышленная схема получения азотной кислоты

    Химические свойства азотной кислоты 1. Сильная одноосновная кислота HNO 3 → H + + NO 3 - 2 . Сильный окислитель CuO + 2HNO 3 = Cu(NO 3) 2 + H 2 O KOH + HNO 3 = KNO 3 + H 2 O 4 HNO 3 (разб.) + 3 Ag = 3 AgNO 3 + NO + 2 H 2 O 4 HNO 3 (конц.) + C = CO 2 + 4NO 2 +2H 2 O 6HNO 3 (конц.) + S = H 2 SO 4 + 6NO 2 +2H 2 O 5HNO 3 (конц.) + P = H 3 PO 4 + 5NO 2 +H 2 O t 0 C t 0 C t 0 C

    H 2 S + 8HNO 3 = H 2 SO 4 + 8NO 2 + 4H 2 O FeS + 12HNO 3 = Fe(NO 3) 3 + H 2 SO 4 + 9NO 2 + 5H 2 O 6HI + 2HNO 3 = 3I 2 + 2NO + 4H 2 O «Царская водка» Смесь конц. HNO 3 и HCl (1:3) по объёму Au + HNO 3 + 4HCl = H + NO + 2H 2 O 3. Вытесняет слабые кислоты из солей 2HNO 3 + Na 2 CO 3 = CO 2 + 2NaNO 3 + H 2 O 2HNO 3 + Na 2 SiO 3 = H 2 SiO 3 + 2NaNO 3 4. Разложение при нагревании 4HNO 3 ⇄ 4NO 2 + 2H 2 O + O 2 t 0 C

    4. Взаимодействие металлов с HNO 3 Практически никогда не выделяется Н 2 !!! При нагревании взаимодействуют все металлы, кроме Pt, Au. HNO 3 (конц.) пассивирует Al, Fe, Be, Cr, Mn (t комн.). Восстанавливается N (продукт зависит от концентрации кислоты и активности металла). Hg + 4HNO 3 (конц.) = Hg(NO 3) 2 + 2NO 2 + 2H 2 O 3Cu + 8HNO 3 (разб.) = 3Cu(NO 3) 2 + 2NO + 4H 2 O 5Zn + 12HNO 3 (разб.) = 5Zn(NO 3) 2 + N 2 + 6H 2 O 8Al + 30HNO 3 (оч. разб.) = 8Al(NO 3) 3 + 3NH 4 NO 3 + 9H 2 O 8Na + 10HNO 3 (конц.) = 8NaNO 3 + N 2 O + 5H 2 O

    Нитраты - соли азотной кислоты. 1. Разлагаются при нагревании M(NO 3) y MNO 2 + O 2 t 0 C M x O y + NO 2 + O 2 M + NO 2 + O 2 Na, K , частично Li и ЩЗМ , Li , ЩЗМ М после С u NH 4 NO 3 = N 2 O + 2H 2 O t 0 C

    2 . Сильные окислители (твёрдые, при t) NaNO 3 + Pb = NaNO 2 + PbO 2 KNO 3 + 3C + S = K 2 S + CO 2 + N 2 Fe 2 O 3 + 6KNO 3 + 4KOH = 2K 2 FeO 4 + 6KNO 2 + 2H 2 O t 0 C t 0 C t 0 C 3 . Слабые окислители в растворах 8 Al +3KNO 3 + 5KOH +18H 2 O = 8K + 3NH 3 феррат калия

    Повышение степени окисления металлов при разложении нитратов 4Fe(NO 3) 2 2Fe 2 O 3 + 8NO 2 + O 2 4 Fe 4 Fe 2O O 2 8 N 8 N +2 +3 +5 +4 -2 0 + 8 e - - 4 e - - 4 e - 8 8 8 1 1 t 0 C Sn (NO 3) 2 SnO 2 + 2NO 2 t 0 C

    Задания 1. Расставьте коэффициенты методом электронного баланса HNO 3 (конц.) + Sn → H 2 SnO 3 + NO 2 + H 2 O HNO 3 (конц.) + K → KNO 3 + N 2 O + H 2 O HNO 3 (разб.) + PH 3 → H 3 PO 4 + NO + H 2 O 2 . Решите задачу Вычислите массовую долю азотной кислоты, если при взаимодействии 350 г её раствора с медью выделилось 9 л (н.у.) оксида азота (II).

    Домашнее задание §31, задание в презентации


    По теме: методические разработки, презентации и конспекты

    Урок химии в 10 классе Получение и применение карбоновых кислот

    Урок в 10 классе по теме "Получение и применение карбоновых кислот". Материал излагается с сопровождением презентации. Учащимися подготовлены сообщения в виде презентаций по наиболее распространенным...

    Урок имеет ярко выраженную практическую направленность. Учащиеся проводят химический эксперимент, изучают свойства нитратов и раскрывают их практическое значение для расений и человека....

  • Поделитесь с друзьями или сохраните для себя:

    Загрузка...