Какие процессы обеспечивают клетку энергией. Жизненные процессы в клетке. Тема: Клеточный уровень

Задания части С1-С4

1. Какие экологические факторы способствуют регуляции численности волков в экосистеме?

Ответ:
1) антропогенные: сокращение площади лесов, чрезмерный отстрел;
2) биотические: недостаток корма, конкуренция, распространение заболеваний.

2. Определите тип и фазу деления клетки, изображённой на рисунке. Какие процессы происходят в этой фазе?

Ответ:
1) на рисунке изображена метафаза митоза;
2) нити веретена деления прикрепляются к центромерам хромосом;
3) в этой фазе двухроматидные хромосомы выстраиваются в плоскости экватора.

3. Почему вспашка почвы улучшает условия жизни культурных растений?

Ответ:
1)способствует уничтожению сорняков и ослабляет конкуренцию с культурными растениями;
2)способствует снабжению растений водой и минеральными веществами;
3)увеличивает поступление кислорода к корням.

4. Чем природная экосистема отличается от агроэкосистемы?

Ответ:
1)большим биоразнообразием и разнообразием пищевых связей и цепей питания;
2)сбалансированным круговоротом веществ;
3)продолжительными сроками существования.

5. Раскройте механизмы, обеспечивающие постоянство чис¬ла и формы хромосом во всех клетках организмов из поколения в поколение?

Ответ:
1)благодаря мейозу образуются гаметы с гаплоидным набором хромосом;
2)при оплодотворении в зиготе восстанавливается диплоидный набор хромосом, что обеспечивает постоянство хромосомного набора;
3)рост организма происходит за счет митоза, обеспечивающего постоянство числа хромосом в соматических клетках.

6. В чем состоит роль бактерий в круговороте веществ?

Ответ:
1)бактерии-гетеротрофы - редуценты разлагают органические вещества до минеральных, которые усваиваются растениями;
2)бактерии-автотрофы (фото, хемотрофы) - продуценты синтезируют органические вещества из неорганических, обеспечивая круговорот кислорода, углерода, азота и др.

7. Какие признаки характерны для моховидных растений?

Ответ:

2)размножаются мхи как половым, так и бесполым путем с чередованием поколений: полового (гаметофит) и бесполого (спорофит);
3)взрослое растение мха - половое поколение (гаметофит) а коробочка со спорами - бесполое (спорофит);
4)оплодотворение происходит при наличии воды.

8. Белки, как правило, обитают в хвойном лесу и питаются преимущественно семенами ели. Какие биотические факторы могут привести к сокращению численности популяции белок?

9. Известно, что аппарат Гольджи особенно хорошо развит в железистых клетках поджелудочной железы. Объясните почему.

Ответ:
1)в клетках поджелудочной железы синтезируются ферменты, которые накапливаются в полостях аппарата Гольджи;
2)в аппарате Гольджи ферменты упаковываются в виде пузырьков;
3)из аппарата Гольджи ферменты выносятся в проток поджелудочной железы.

10. В пробирку поместили рибосомы из разных клеток, весь набор аминокислот и одинаковые молекулы иРНК и тРНК, создали все условия для синтеза белка. Почему в пробирке будет синтезироваться один вид белка на разных рибосомах?

Ответ:
1)первичная структура белка определяется последовательностью аминокислот;
2)матрицами для синтеза белка являются одинаковые молекулы иРНК, в которых закодирована одна и та же первичная структура белка.

11. Какие особенности строения характерны для представителей типа Хордовых?

Ответ:
1)внутренний осевой скелет;
2)нервная система в виде трубки на спинной стороне тела;
3)щели в пищеварительной трубке.

12. Клевер произрастает на лугу, опыляется шмелями. Какие биотические факторы могут привести к сокращению численности популяции клевера?

Ответ:
1)уменьшение численности шмелей;
2)увеличение численности растительноядных животных;
3)размножение растений конкурентов (злаков и др).

13. Общая масса митохондрий по отношению к массе клеток различных органов крысы составляет: в поджелудочной железе - 7,9%, в печени - 18,4%, в сердце - 35,8%. Почему в клетках этих органов различное содержание митохондрий?

Ответ:
1)митохондрии являются энергетическими станциями клетки, в них синтезируются и накапливаются молекулы АТФ;
2)для интенсивной работы сердечной мышцы необходимо много энергии, поэтому содержание митохондрий в ее клетках наиболее высокое;
3)в печени количество митохондрий по сравнению с поджелудочной железой выше, так как в ней идет более интенсивный обмен веществ.

14. Объясните, почему говядину, которая не прошла санитарного контроля, опасно употреблять в пищу в недоваренном или слабо прожаренном виде.

Ответ:
1)в говяжьем мясе могут быть финны бычьего цепня;
2)в пищеварительном канале из финны развивается взрослый червь, и человек становится окончательным хозяином.

15. Назовите органоид растительной клетки, изображенный на рисунке, его структуры, обозначенные цифрами 1-3, и их функции.

Ответ:
1)изображенный органоид - хлоропласт;
2)1 - тилакоиды граны, участвуют в фотосинтезе;
3)2 - ДНК, 3 - рибосомы, участвуют в синтезе собственных белков хлоропласта.

16. Почему бактерии нельзя отнести к эукариотам?

Ответ:
1)в их клетках ядерное вещество представлено одной кольцевой молекулой ДНК и не отделено от цитоплазмы;
2)не имеют митохондрий, комплекса Гольджи, ЭПС;
3)не имеют специализированных половых клеток, отсутствуют мейоз и оплодотворение.

17. Какие изменения биотических факторов могут привести к увеличению численности популяции голого слизня, обитающего в лесу и питающегося преимущественно растениями?

18. В листьях растений интенсивно протекает процесс фотосинтеза. Происходит ли он в зрелых и незрелых плодах? Ответ поясните.

Ответ:
1)фотосинтез происходит в незрелых плодах (пока они зеленые), так как в них имеются хлоропласты;
2)по мере созревания хлоропласты превращаются в хромопласты, в которых не происходит фотосинтез.

19. Какие стадии гаметогенеза обозначены на рисунке буквами А, Б и В? Какой набор хромосом имеют клетки на каждой из этих стадий? К развитию каких специализированных клеток ведет этот процесс?

Ответ:
1)А - стадия (зона) размножения (деления), клетки диплоидные;
2)Б - стадия (зона) роста, клетка диплоидная;
3)В - стадия (зона) созревания, клетки гаплоидные, развиваются сперматозоиды.

20. Чем отличаются по строению бактериальные клетки от клеток организмов других царств живой природы? Укажите не менее трех отличий.

Ответ:
1)отсутствует оформленное ядро, ядерная оболочка;
2)отсутствует ряд органоидов: митохондрии, ЭПС, комплекс Гольджи и др.;
3)имеют одну кольцевую хромосому.

21. Почему растения (продуценты) считают начальным звеном круговорота веществ и превращения энергии в экосистеме?

Ответ:
1)создают органические вещества из неорганических;
2)аккумулируют солнечную энергию;
3)обеспечивают органическими веществами и энергией организмы других звеньев экосистемы.

22. Какие процессы обеспечивают передвижение воды и минеральных веществ по растению?

Ответ:
1)из корня в листья вода и минеральные вещества передвигаются по сосудам за счет транспирации, в результате которой возникает сосущая сила;
2)восходящему току в растении способствует корневое давление, которое возникает в результате постоянного поступления воды в корень за счет разницы концентрации веществ в клетках и окружающей среде.

23. Рассмотрите изображенные на рисунке клетки. Определите, какими буквами обозначены прокариотическая и эукариотическая клетки. Приведите доказательства своей точки зрения.

Ответ:
1)А - прокариотическая клетка, Б - эукариотическая клетка;
2)клетка на рисунке А не имеет оформленного ядра, ее наследственный материал представлен кольцевой хромосомой;
3)клетка на рисунке Б имеет оформленное ядро и органоиды.

24. В чем проявляется усложнение кровеносной системы земноводных по сравнению с рыбами?

Ответ:
1)сердце становится трехкамерным;
2)появляется второй круг кровообращения;
3)в сердце содержится венозная и смешанная кровь.

25. Почему экосистему смешанного леса считают более устойчивой, чем экосистему елового леса?

Ответ:
1)в смешанном лесу больше видов, чем в еловом;
2)в смешанном лесу цепи питания более длинные и разветвленные, чем в еловом;
3)в смешанном лесу ярусов больше, чем в еловом.

26. Участок молекулы ДНК имеет следующий состав: ГАТГААТАГТГЦТТЦ. Перечислите не менее трех последствий, к которым может привести случайная замена седьмого нуклеотида тимина на цитозин (Ц).

Ответ:
1)произойдет генная мутация - изменится кодон третьей аминокислоты;
2)в белке может произойти замена одной аминокислоты на другую, в результате изменится первичная структура белка;
3)могут измениться все остальные структуры белка, что повлечет появление у организма нового признака.

27. Красные водоросли (багрянки) обитают на большой глубине. Несмотря на это, в их клетках происходит фотосинтез. Объясните, за счет чего происходит фотосинтез, если толща воды поглощает лучи красно - оранжевой части спектра.

Ответ:
1)для фотосинтеза необходимы лучи не только красной, но и синей части спектра;
2)в клетках багрянок содержится красный пигмент, который поглощает лучи синей части спектра, их энергия используется в процессе фотосинтеза.

28. Найдите ошибки в приведенном тексте. Укажите номера предложений, в которых сделаны ошибки, исправьте их.
1.Кишечнополостные - это трехслойные многоклеточные животные. 2.Они имеют гастральную или кишечную полость. 3.Кишечная полость включает стрекательные клетки. 4.Кишечнополостные имеют сетчатую (диффузную) нервную систему. 5.Все кишечнополостные - свободноплавающие организмы.


1)1 - кишечнополостные - двухслойные животные;
2)3 - стрекательные клетки содержатся в эктодерме, а не в кишечной полости;
3)5 - среди кишечнополостных есть прикрепленные формы.

29. Каким образом происходит газообмен в лёгких и тканях у млекопитающих? Чем обусловлен этот процесс?

Ответ:
1)в основе газообмена лежит диффузия, которая обусловлена разницей концентрации газов (парциального давления) в воздухе альвеол и в крови;
2)кислород из области высокого давления в альвеолярном воздухе поступает в кровь, а углекислый газ из области высокого давления в крови поступает в альвеолы;
3)в тканях кислород из области высокого давления в капиллярах поступает в межклеточное вещество и далее в клетки органов. Углекислый газ из области высокого давления в межклеточном веществе поступает в кровь.

30. В чем проявляется участие функциональных групп организмов в круговороте веществ в биосфере? Рассмотрите роль каждой из них в круговороте веществ в биосфере.

Ответ:
1)продуценты синтезируют органические вещества из неорганических (углекислого газа, воды, азота, фосфора и других минеральных веществ), выделяют кислород (кроме хемотрофов);
2)консументы (и другие функциональные группы) организмов используют и преобразуют органические вещества, окисляют их в процессе дыхания, поглощая кислород и выделяя углекислый газ и воду;
3)редуценты разлагают органические вещества до неорганических соединений азота, фосфора и др., возвращая их в среду.

31. Участок молекулы ДНК, кодирующей последовательность аминокислот в белке, имеет следующий состав: Г-А-Т-Г-А-А-Т-А-Г-ТТ-Ц-Т-Т-Ц. Объясните, к каким последствиям может привести случайное добавление нуклеотида гуанина (Г) между седьмым и восьмым нуклеотидами.

Ответ:
1)произойдёт генная мутация — могут измениться коды третьей и последующих аминокислот;
2)может измениться первичная структура белка;
3)мутация может привести к появлению нового признака у организма.

32. Какие органы растений повреждают майские жуки на разных стадиях инди-видуального развития?

Ответ:
1)корни растений повреждают личинки;
2)листья деревьев повреждают взрослые жуки.

33. Найдите ошибки в приведённом тексте. Укажите номера предложений, в которых сделаны ошибки, исправьте их.
1. Плоские черви — это трехслойные животные. 2. К типу Плоские черви относят белую планарию, человеческую аскариду и печеночного сосальщика. 3. Плоские черви имеют вытянутое уплощенное тело. 4. У них хорошо развита нервная система. 5. Плоские черви — раздельнополые животные, откладывают яйца.

Ошибки допущены в предложениях:
1)2 — к типу Плоские черви не относят человеческую аскариду, это Круглый червь;
2)4 — у плоских червей нервная система развита слабо;
3)5 — Плоские черви — гермафродиты.

34. Что представляет собой плод? Каково его значение в жизни растений и жи-вотных?

Ответ:
1)плод — генеративный орган покрытосеменных растений;
2)содержит семена, с помощью которых происходит размножение и расселение растений;
3)плоды растений — пища для животных.

35. Большая часть видов птиц улетает на зиму из северных районов, несмотря на их теплокровность. Укажите не менее трёх факторов, которые являются причиной перелётов этих животных.

Ответ:
1)пищевые объекты насекомоядных птиц становятся не доступными для добывания;
2)ледовый покров на водоёмах и снеговой покров на земле лишают пищи растительноядных птиц;
3)изменение продолжительности светового дня.

36. Какое молоко, стерилизованное или свеженадоенное, прокиснет быстрее в одних и тех же условиях? Ответ поясните.

Ответ:
1)быстрее прокиснет свеженадоенное молоко, так как в нем имеются бактерии, вызывающие сбраживание продукта;
2)при стерилизации молока клетки и споры молочнокислых бактерий погибают, и молоко сохраняется дольше.

37. Найдите ошибки в приведенном тексте. Укажите номера предложений, в которых сделаны ошибки, объясните их.
1. Основные классы типа членистоногих — Ракообразные, Паукообразные и Насекомые. 2. Тело ракообразных и паукообразных расчленено на голову, грудь и брюшко. 3. Тело насекомых состоит из головогруди и брюшка. 4. У паукообразных усиков нет. 5. У насекомых две пары усиков, а у ракообразных одна пара.

Ошибки допущены в предложениях:
1)2 - тело ракообразных и паукообразных состоит из головогруди и брюшка;
2)3 - тело насекомых состоит из головы, груди и брюшка;
3)5 - у насекомых одна пара усиков, а у ракообразных две пары.

38. Докажите, что корневище растения — видоизмененный побег.

Ответ:
1)корневище имеет узлы, в которых находятся рудиментарные листья и почки;
2)на верхушке корневища находится верхушечная почка, определяющая рост побега;
3)от корневища отходят придаточные корни;
4)внутреннее анатомическое строение корневища сходно со стеблем.

39. Для борьбы с насекомыми-вредителями человек применяет химические вещества. Укажите не менее трёх изменений жизни дубравы в случае, если в ней химическим способом будут уничтожены все растительноядные насекомые. Объясните, почему они произойдут.

Ответ:
1)численность насекомоопыляемых растений резко сократится, так как растительноядные насекомые являются опылителями растений;
2)резко сократится численность насекомоядных организмов (консументов ІІ порядка) или они исчезнут из-за нарушения цепей питания;
3)часть химических веществ, которыми уничтожали насекомых, попадет в почву, что приведет к нарушению жизнедеятельности растений, гибели почвенной флоры и фауны, все нарушения могут привести к гибели дубравы.

40. Почему лечение антибиотиками может привести к нарушению функции кишечника? Назовите не менее двух причин.

Ответ:
1)антибиотики убивают полезные бактерии, обитающие в кишечнике человека;
2)нарушаются расщепление клетчатки, всасывание воды и другие процессы.

41.Какая часть листа обозначена на рисунке буквой А и из каких структур она состоит? Какие функции выполняют эти структуры?

1)буквой А обозначен сосудисто-волокнистый пучок (жилка), в состав пучка входят сосуды, ситовидные трубки, механическая ткань;
2)сосуды обеспечивают транспорт воды в листья;
3)ситовидные трубки обеспечивают транспорт органических веществ из листьев в другие органы;
4)клетки механической ткани придают прочность и являются каркасом листа.

42. Каковы характерные признаки царства грибов?

Ответ:
1)тело грибов состоит из нитей - гифов, образующих грибницу;
2)размножаются половым путем и бесполым (спорами, грибницей, почкованием);
3)растут в течение всей жизни;
4)в клетке: оболочка содержит хитиноподобное вещество, запасное питательное вещество - гликоген.

43. В небольшом водоеме, образовавшемся после разлива реки, обнаружены следующие организмы: инфузории-туфельки, дафнии, белые планарии, большой прудовик, циклопы, гидры. Объясните, можно ли этот водоем считать экосистемой. Приведите не менее трех доказательств.

Ответ:
Названный временный водоем нельзя назвать экосистемой, так как в нем:
1)отсутствуют продуценты;
2)отсутствуют редуценты;
3)отсутствует замкнутый круговорот веществ и нарушены цепи питания.

44. Почему под жгут, который накладывают для остановки кровотечения из крупных кровеносных сосудов, кладут записку с указанием времени его наложения?

Ответ:
1)прочитав записку, можно определить, сколько времени прошло после наложения жгута;
2)если через 1-2 часа не удалось доставить больного к врачу, то следует на некоторое время ослабить жгут. Это предупредит омертвление тканей.

45. Назовите структуры спинного мозга, обозначенные на рисунке цифрами 1 и 2, и опишите особенности их строения и функции.

Ответ:
1)1 - серое вещество, образовано телами нейронов;
2)2 - белое вещество, образовано длинными отростками нейронов;
3)серое вещество осуществляет рефлекторную функцию, белое вещество - проводниковую функцию.

46. Какую роль играют слюнные железы в пищеварении у млекопитающих? Укажите не менее трех функций.

Ответ:
1)секрет слюнных желез смачивает и обеззараживает пищу;
2)слюна участвует в формировании пищевого комка;
3)ферменты слюны способствуют расщеплению крахмала.

47. В результате вулканической деятельности в океане образовался остров. Опишите последовательность формирования экосистемы на недавно образовавшемся участке суши. Укажите не менее трех элементов.

Ответ:
1)первыми поселятся микроорганизмы и лишайники, которые обеспечивают образование почвы;
2)на почве поселяются растения, споры или семена которых заносятся ветром или водой;
3)по мере развития растительности в экосистеме появляются животные, в первую очередь членистоногие и птицы.

48. Опытные садоводы вносят удобрения в бороздки, расположенные по краям приствольных кругов плодовых деревьев, а не распределяют их равномерно. Объясните почему.

Ответ:
1)корневая система разрастается, зона всасывания перемещается за верхушкой корня;
2)корни с развитой зоной всасывания - корневыми волосками - находятся по краям приствольных кругов.

49. Какой видоизмененный побег представлен на рисунке? Назовите элементы строения, обозначенные на рисунке цифрами 1, 2, 3, и функции, которые они выполняют.

Ответ:
1)луковица;
2)1 - сочный чешуевидный лист, в котором запасаются питательные вещества и вода;
3)2 - придаточные корни, обеспечивающие поглощение воды и минеральных веществ;
4)3 - почка, обеспечивает рост побега.

50. Каковы особенности строения и жизнедеятельности мхов? Укажите не менее трех элементов.

Ответ:
1)большинство мхов - листостебельные растения, некоторые из них имеют ризоиды;
2)у мхов слабо развита проводящая система;
3)размножаются мхи как половым, так и бесполым способом, с чередованием поколений: полового (гаметофит) и бесполого (спорофит); взрослое растение мха - половое поколение, а коробочка со спорами - бесполое.

51. В результате лесного пожара выгорела часть елового леса. Объясните, как будет происходить его самовосстановление. Укажите не менее трех этапов.

Ответ:
1)первыми развиваются травянистые светолюбивые растения;
2)потом появляются всходы березы, осины, сосны, семена которых попали с помощью ветра, образуется мелколиственный или сосновый лес.
3)под пологом светолюбивых пород развиваются теневыносливые ели, которые впоследствии полностью вытесняют другие деревья.

52. Для установления причины наследственного заболевания исследовали клетки больного и обнаружили изменение длины одной из хромосом. Какой метод исследования позволил установить причину данного заболевания? С каким видом мутации оно связано?

Ответ:
1)причина болезни установлена с помощью цитогенетического метода;
2)заболевание вызвано хромосомной мутацией - утратой или присоединением фрагмента хромосомы.

53. Какой буквой на рисунке обозначена бластула в цикле развития ланцетника. Каковы особенности формирования бластулы?

Ответ:
1)бластула обозначена буквой Г;
2)бластула формируется при дроблении зиготы;
3)размеры бластулы не превышают размеров зиготы.

54. Почему грибы выделяют в особое царство органического мира?

Ответ:
1)тело грибов состоит из тонких ветвящихся нитей — гифов, образующих мицелий, или грибницу;
2)клетки мицелия запасают углеводы в виде гликогена;
3)грибы нельзя отнести к растениям, так как в их клетках нет хлорофилла и хлоропластов; стенка содержит хитин;
4)грибы нельзя отнести к животным, так как они всасывают питательные вещества всей поверхностью тела, а не заглатывают в виде пищевых комочков.

55. В некоторых лесных биоценозах для защиты куриных птиц проводили массовый отстрел дневных хищных птиц. Объясните, как отразилось это мероприятие на численности куриных.

Ответ:
1)вначале численность куриных возросла, так как были уничтожены их враги (естественно регулирующие численность);
2)затем численность куриных сократилась из-за нехватки корма;
3)возросло число больных и ослабленных особей из-за распространения болезней и отсутствия хищников, что тоже повлияло на снижение численности куриных.

56. Окраска шерсти зайца-беляка изменяется в течение года: зимой заяц белый, а летом серый. Объясните, какой вид изменчивости наблюдается у животного и чем определяется проявление данного признака.

Ответ:
1)у зайца наблюдается проявление модификационной (фенотипической, не-наследственной) изменчивости;
2)проявление данного признака определяется изменением условий среды обитания (температура, длина дня).

57. Назовите стадии эмбрионального развития ланцетника, обозначенные на рисунке буквами А и Б. Раскройте особенности образования каждой из этих стадий.
А Б

Ответ:
1)А — гаструла — стадия двухслойного зародыша;
2)Б — нейрула, имеет зачатки будущей личинки или взрослого организма;
3)гаструла образуется путём впячивания стенки бластулы, а в нейруле закладывается вначале нервная пластинка, которая служит регулятором для закладки остальных систем органов.

58. Назовите основные признаки строения и жизнедеятельности бактерий. Укажите не менее четырёх особенностей.

Ответ:
1)бактерии - доядерные организмы, не имеющие оформленного ядра и многих органоидов;
2)по способу питания бактерии - гетеротрофы и автотрофы;
3)высокая скорость размножения путем деления;
4)анаэробы и аэробы;
5)неблагоприятные условия переживают в состоянии спор.

59. Чем отличается наземно-воздушная среда от водной?

Ответ:
1)содержанием кислорода;
2)различиями в колебаниях температуы (широкая амплитуда колебаний в наземно - воздушной среде);
3)степенью освещенности;
4)плотностью.
Ответ:
1) морская капуста обладает свойством накапливать химический элемент йод;
2)йод необходим для нормальной функции щитовидной железы.

61. Почему клетку инфузории-туфельки считают целостным организмом? Какие органоиды инфузории-туфельки обозначены на рисунке цифрами 1 и 2 и какие функции они выполняют?

Ответ:
1) клетка инфузории выполняет все функции самостоятельного организма: обмен веществ, размножение, раздражимость, адаптация;
2) 1 — малое ядро, участвует в половом процессе;
3) 2 — большое ядро, регулирует процессы жизнедеятельности.

61. Каковы особенности строения и жизнедеятельности грибов? Укажите не менее трех признаков.

62. Объясните, какой вред растениям наносят кислотные дожди. Приведите не менее трех причин.

Ответ:
1)непосредственно повреждают органы и ткани растений;
2)загрязняют почву, уменьшают плодородие;
3)понижают продуктивность растений.

63. Почему при взлете или посадке самолета пассажирам рекомендуют сосать леденцы?

Ответ:
1)быстрое изменение давления при взлете или посадке самолета вызывает неприятные ощущения в среднем ухе, где исходное давление на барабанную перепонку сохраняется дольше;
2)глотательные движения улучшают доступ воздуха к слуховой (евстахиевой) трубе, через которую давление в полости среднего уха выравнивается с давлением в окружающей среде.

64. Чем отличается кровеносная система членистоногих от кровеносной системы кольчатых червей? Укажите не менее трех признаков, которые доказывают эти отличия.

Ответ:
1)у членистоногих кровеносная система незамкнутая, а у кольчатых червей замкнутая;
2)у членистоногих имеется сердце на спинной стороне;
3)у кольчатых червей сердца нет, его функцию выполняет кольцевой сосуд.

65. К какому типу относят животное, изображенное на рисунке? Что обозначено цифрами 1 и 2? Назовите других представителей этого типа.

Ответ:
1)к типу Кишечнополостных;
2)1 - эктодерма, 2 - кишечная полость;
3)коралловые полипы, медузы.

66. В чем проявляются морфологические, физиологические и поведенческие адаптации к температуре среды у теплокровных животных?

Ответ:
1)морфологические: теплоизолирующие покровы, подкожный слой жира, изменение поверхности тела;
2)физиологические: усиление интенсивности испарения пота и влаги при дыхании; сужение или расширение сосудов, изменение уровня обмена веществ;
3)поведенческие: строительство гнезд, нор, изменение суточной и сезонной активности в зависимости от температуры среды.

67. Как осуществляется поступление генетической информации из ядра в рибосому?

Ответ:
1)синтез иРНК происходит в ядре в соответствии с принципом комплементарности;
2)иРНК - копия участка ДНК, содержащая информацию о первичной структуре белка, перемещается из ядра к рибосоме.

68. В чем проявляется усложнение папоротников по сравнению с мхами? Приведите не менее трех признаков.

Ответ:
1)у папоротников появились корни;
2)у папоротников, в отличие от мхов, сформировалась развитая проводящая ткань;
3)в цикле развития папоротников бесполое поколение (спорофит) преобладает над половым (гаметофитом), который представлен заростком.

69. Назовите зародышевый листок позвоночного животного, обозначенный на рисунке цифрой 3. Какой тип ткани и какие органы формируются из него.

Ответ:
1)зародышевый листок - энтодерма;
2ткань эпителиальная (эпителий кишечника и органов дыхания);
3)органы: кишечник, пищеварительные железы, органы дыхания, некоторые железы внутренней секреции.

70. Какую роль играют птицы в биоценозе леса? Приведите не менее трёх примеров.

Ответ:
1)регулируют численность растений (распространяют плоды и семена);
2) регулируют численность насекомых, мелких грызунов;
3)служат пищей для хищников;
4)удобряют почву.

71. В чём проявляется защитная роль лейкоцитов в организме человека?

Ответ:
1)лейкоциты способны к фагоцитозу - пожиранию и перевариванию белков, микроорганизмов, отмерших клеток;
2)лейкоциты принимают участие в выработке антител, которые нейтрализуют определенные антигены.

72. Найдите ошибки в приведённом тексте. Укажите номера предложений, в которых они сделаны, исправьте их.
Согласно хромосомной теории наследственности:
1. Гены располагаются в хромосомах в линейном порядке. 2. Каждый занимает определенное место — аллель. 3. Гены одной хромосомы образуют группу сцепления. 4. Число групп сцепления определяется диплоидным бором хромосом. 5. Нарушение сцепления генов происходит в процессе конъюгации хромосом в профазе мейоза.

Ошибки допущены в предложениях:
1)2 — место расположения гена — локус;
2)4 — число групп сцепления равно гаплоидному набору хромосом;
3)5 — нарушение сцепления генов происходит при кроссинговере.

73. Почему зелёную эвглену одни учёные относят к растениям, а другие — к животным? Укажите не менее трёх причин.

Ответ:
1)способна к гетеротрофному питанию, как все животные;
2)способна к активному движению в поисках пищи, как все животные;
3)содержит в клетке хлорофилл и способна к автотрофному питанию, как растения.

74. Какие процессы происходят на этапах энергетического обмена?

Ответ:
1)на подготовительном этапе сложные органические вещества расщепляются до менее сложных (биополимеры — до мономеров), энергия рассеивается в виде тепла;
2)в процессе гликолиза глюкоза расщепляется до пировиноградной кислоты (или молочной кислоты, или спирта) и синтезируется 2 молекулы АТФ;
3)на кислородном этапе пировиноградная кислота (пируват) расщепляется до углекислого газа и воды и синтезируется 36 молекул АТФ.

75. В образовавшейся на теле человека ране кровотечение со временем приоста-навливается, однако может возникнуть нагноение. Объясните, какими свойствами крови это обусловлено.

Ответ:
1)кровотечение приостанавливается благодаря свёртыванию крови и образованию тромба;
2)нагноение обусловлено накоплением отмерших лейкоцитов, осуществивших фагоцитоз.

76. Найдите ошибки в приведенном тексте, исправьте их. Укажите номера пред-ложений, в которых сделаны ошибки, объясните их.
1. Большое значение в строении и жизнедеятельности организмов имеют белки. 2. Это биополимеры, мономерами которых являются азотистые основания. 3. Белки входят в состав плазматической мембраны. 4. Многие белки выполняют в клетке ферментативную функцию. 5. В молекулах белка зашифрована наследственная информация о признаках организма. 6. Молекулы белка и тРНК входят в состав рибосом.

Ошибки допущены в предложениях:
1)2 — мономерами белков являются аминокислоты;
2)5 — наследственная информация о признаках организма зашифрована в молекулах ДНК;
3)6- в состав рибосом входят молекулы рРНК, а не тРНК.

77. Что такое близорукость? В какой части глаза фокусируется изображение у близорукого человека? Чем различаются врождённая и приобретённая формы близорукости?

Ответ:
1)близорукость — это заболевание органов зрения, при котором человек плохо различает удалённые предметы;
2)у близорукого человека изображение предметов возникает перед сетчаткой;
3)при врождённой близорукости изменяется форма глазного яблока (удлиняется);
4)приобретенная близорукость связана с изменением (увеличением) кривизны хрусталика.

78. Чем отличается скелет головы человека от скелета головы человекообразных обезьян? Укажите не менее четырёх отличий.

Ответ:
1)преобладание мозгового отдела черепа над лицевым;
2)уменьшение челюстного аппарата;
3)наличие подбородочного выступа на нижней челюсти;
4)уменьшение надбровных дуг.

79. Почему объём мочи, выделяемой телом человека за сутки, не равен объём выпитой за это же время жидкости?

Ответ:
1)часть воды используется организмом или образуется в процессах обмена веществ;
2)часть воды испаряется через органы дыхания и потовые железы.

80. Найдите ошибки в приведенном тексте, исправьте их, укажите номера предложений, в которых они сделаны, запишите эти предложения без ошибок.
1. Животные — это гетеротрофные организмы, они питаются готовыми органическими веществами. 2. Различают одноклеточных и многоклеточных животных. 3. Все многоклеточные животные имеют двустороннюю симметрию тела. 4. У большинства из них развиты различные органы передвижения. 5. Кровеносную систему имеют только членистоногие и хордовые. 6. Постэмбриональное развитие у всех многоклеточных животных прямое.

Ошибки допущены в предложениях:
1) 3 — двусторонюю симметрию тела имеют не все многоклеточные животные; например, у кишечнополостных она лучевая (радиальная);
2) 5 — кровеносная система имеется также у кольчатых червей и моллюсков;
3) 6 — прямое постэмбриональное развитие присуще не всем многоклеточным животным.

81. Какое значение имеет кровь в жизнедеятельности человека?

Ответ:
1)выполняет транспортную функцию: доставка кислорода и питательных веществ к тканям и клеткам, удаление углекислого газа и продуктов обмена;
2)выполняет защитную функцию благодаря деятельности лейкоцитов и антител;
3)участвует в гуморальной регуляции жизнедеятельности организма.

82. Используйте сведения о ранних стадиях эмбриогенеза (зиготе, бластуле, гаструле) для подтверждения последовательности развития животного мира.

Ответ:
1) стадия зиготы соответствует одноклеточному организму;
2) стадия бластулы, где клетки не дифференцированы, сходна с колониальными формами;
3) зародыш на стадии гаструлы соответствует строению кишечнополостного (гидры).

83. Введение в вену больших доз лекарственных препаратов сопровождается их разбавлением физиологическим раствором (0,9% раствором NaCl). Поясните почему.

Ответ:
1) введение больших доз препаратов без разбавления может вызвать резкое изменение состава крови и необратимые явления;
2) концентрация физиологического раствора (0,9% раствор NaCl) соответствует концентрации солей в плазме крови и не вызывает гибели клеток крови.

84. Найдите ошибки в приведённом тексте, исправьте их, укажите номера пред-ложений, в которых они сделаны, запишите эти предложения без ошибок.
1. Животные типа членистоногих имеют наружный хитиновый покров и членистые конечности. 2. Тело у их большинства состоит из трёх отделов: головы, груди и брюшка. 3. Все членистоногие имеют по одной паре усиков. 4. Глаза у них сложные (фасеточные). 5. Кровеносная система у насекомых замкнутая.

Ошибки допущены в предложениях:
1)3 — по одной паре усиков имеют не все членистоногие (у паукообразных их нет, а у ракообразных — по две пары);
2)4 — не все членистоногие имеют сложные (фасеточные) глаза: у паукообразных они простые или отсутствуют, у насекомых наряду со сложными глазами могут быть простые;
3)5 — кровеносная система у членистоногих незамкнутая.

85. Каковы функции пищеварительной системы человека?

Ответ:
1)механическая обработка пищи;
2)химическая обработка пищи;
3)передвижение пищи и удаление непереваренных остатков;
4)всасывание питательных веществ, минеральных солей и воды в кровь и лимфу.

86. Чем характеризуется биологический прогресс у цветковых растений? Укажите не менее трёх признаков.

Ответ:
1)большим разнообразием популяций и видов;
2)широким расселением на земном шаре;
3)приспособленностью к жизни в разных экологических условиях.

87. Почему пищу надо тщательно пережёвывать?

Ответ:
1)хорошо пережёванная пища быстрее пропитывается слюной в ротовой полости и начинает перевариваться;
2)хорошо пережёванная пища быстрее пропитывается пищеварительными соками в желудке и кишечнике и поэтому легче переваривается.

88. Найдите ошибки в приведённом тексте. Укажите номера предложений, в которых они сделаны, исправьте их.
1.Популяция представляет собой совокупность свободно скрещивающихся особей одного вида, длительное время населяющих общую территорию.2.Разные популяции одного и того же вида относительно изолированы друг от друга, и их особи не скрещиваются между собой. 3. Генофонд всех популяций одного вида одинаков. 4. Популяция является элементарной единицей эволюции. 5. Группа лягушек одного вида, живущих в глубокой луже в течение одного лета, представляет собой популяцию.

Ошибки допущены в предложениях:
1)2 — популяции одного вида частично изолированы, но особи разных популяций могут скрещиваться;
2)3 — генофонды разных популяций одного вида отличаются;
3)5 — группа лягушек не является популяцией, так как группа особей одного вида считается популяцией, если она на протяжении большого числа поколений занимает одно и то же пространство.

89. Почему летом при длительной жажде рекомендуется пить подсоленую воду?

Ответ:
1)летом у человека усиливается потоотделение;
2)с потом из организма выводятся минеральные соли;
3)подсоленная вода восстанавливает нормальный водно-солевой баланс между тканями и внутренней средой организма.

90. Чем доказывается принадлежность человека к классу млекопитающих?

Ответ:
1)сходством строения систем органов;
2)наличием волосяного покрова;
3)развитием зародыша в матке;
4)выкармливанием потомства молоком, заботой о потомстве.

91. Какие процессы поддерживают постоянство химического состава плазмы крови человека?

Ответ:
1)процессы в буферных системах поддерживают реакцию среды (рН) на постоянном уровне;
2)осуществляется нейрогуморальная регуляция химического состава плазмы.

92. Найдите ошибки в приведённом тексте. Укажите номера предложений, в которых они сделаны, объясните их.
1.Популяция представляет собой совокупность свободно скрещивающихся особей разных видов, длительное время населяющих общую территорию.2.Основными групповыми характеристиками популяции являются численность, плотность, возрастная, половая и пространственная структуры. 3. Совокупность всех генов популяции называется генофондом. 4. Популяция является структурной единицей живой природы. 5. Численность популяций, всегда стабильна.

Ошибки допущены в предложениях:
1)1 — популяция представляет собой совокупность свободно скрещивающихся особей одного вида, длительное время населяющих общую территорию популяции;
2)4 — популяция является структурной единицей вида;
3)5 — численность популяций может изменяться в разные сезоны и годы.

93. Какие структуры покровов тела обеспечивают защиту организма человека от воздействия температурных факторов среды? Объясните их роль.

Ответ:
1)подкожная жировая клетчатка предохраняет организм от охлаждения;
2)потовые железы образуют пот, который при испарении защищает от перегревания;
3)волосы на голове защищают организм от охлаждения и перегревания;
4)изменение просвета капилляров кожи регулирует теплоотдачу.

94. Приведите не менее трёх прогрессивных биологических признаков человека, которые он приобрел в процессе длительной эволюции.

Ответ:
1)увеличение мозга и мозгового отдела черепа;
2)прямохождение и соответствующие изменения в скелете;
3)освобождение и развитие руки, противопоставление большого пальца.

95. Какое деление мейоза сходно с митозом? Объясните, в чём оно выражается и к какому набору хромосом в клетке приводит.

Ответ:
1)сходство с митозом наблюдается во втором делении мейоза;
2)все фазы сходны, к полюсам клетки расходятся сестринские хромосомы (хроматиды);
3)образовавшиеся клетки имеют гаплоидный набор хромосом.

96.Чем отличается артериальное кровотечение от венозного?

Ответ:
1)при артериальном кровотечении кровь алого цвета;
2)бьёт из раны сильной струей, фонтаном.

97. Схема какого процесса, происходящего в организме человека, изображена на рисунке? Что лежит в основе этого процесса и как изменяется в результате состав крови? Ответ поясните.
капилляр

Ответ:
1)на рисунке изображена схема газообмена в лёгких (между лёгочным пузырьком и капилляром крови);
2)в основе газообмена лежит диффузия — проникновение газов из места с большим давлением в место с меньшим давлением;
3)в результате газообмена кровь насыщается кислородом и превращается из венозной (А) в артериальную (Б).

98. Какое воздействие оказывает гиподинамия (низкая двигательная активность) на организм человека?

Ответ:
гиподинамия приводит:
1)к понижению уровня обмена веществ, увеличению жировой ткани, избыточной массе тела;
2)ослаблению скелетных и сердечной мышц, увеличению нагрузки на сердце и снижению выносливости организма;
3)застою венозной крови в нижних конечностях, расширению сосудов, нарушению кровообращения.

(Допускаются иные формулировки ответа, не искажающие его смысла.)

99. Какие особенности имеют растения, обитающие в засушливых условиях?

Ответ:
1)корневая система растений глубоко проникает в почву, достаёт до грунтовых вод или располагается в поверхностном слое почвы;
2)у некоторых растений вода во время засухи запасается в листьях, стеблях и других органах;
3)листья покрыты восковым налётом, опушены или видоизменены в колючки или иголки.

100. С чем связана необходимость поступления в кровь человека ионов железа? Ответ поясните.

Ответ:

2)эритроциты обеспечивают транспорт кислорода и углекислого газа.

101. По каким сосудам и какая кровь поступает в камеры сердца, обозначенные на рисунке цифрами 3 и 5? С каким кругом кровообращения связана каждая из этих структур сердца?

Ответ:
1)в камеру, обозначенную цифрой 3, поступает венозная кровь из верхней и нижней полых вен;
2)в камеру, обозначенную цифрой 5, поступает артериальная кровь из легочных вен;
3)камера сердца, обозначенная цифрой 3, связана с большим кругом кровообращения;
4)камера сердца, обозначенная цифрой 5, связана с малым кругом кровообращения.

102. Что представляют собой витамины, какова их роль в жизнедеятельности ор-ганизма человека?

Ответ:
1)витамины — биологически активные органические вещества, необходимые в небольших количествах;
2)они входят в состав ферментов, участвуя в обмене веществ;
3)повышают сопротивляемость организма к неблагоприятным воздействиям внешней среды, стимулируют рост, развитие организма, восстановление тканей и клеток.

103. Форма тела бабочки калимы напоминает лист. Как сформировалась подобная форма тела у бабочки?

Ответ:
1)появление у особей разнообразных наследственных изменений;
2)сохранение естественным отбором особей с измененной формой тела;
3)размножение и распространение особей с формой тела, напоминающей лист.

104. Какова природа большинства ферментов и почему они теряют свою активность при повышении уровня радиации?

Ответ:
1)большинство ферментов — белки;
2)под действием радиации происходит денатурация, изменяется структура белка-фермента.

105. Найдите ошибки в приведённом тексте. Укажите номера предложений, в ко-торых они сделаны, исправьте их.
1. Растения, как и все живые организмы, питаются, дышат, растут, размножаются. 2. По способу питания растения относят к автотрофным организмам. 3. При дыхании растения поглощают углекислый газ и выделяют кислород. 4. Все растения размножаются семенами. 5. Растения, как и животные, растут только в первые годы жизни.

Ошибки допущены в предложениях:
1)3 — при дыхании растения поглощают кислород и выделяют углекислый газ;
2)4 — размножаются семенами только цветковые и голосеменные, а водоросли, мхи, папортники — спорами;
3)5 — растения растут в течение всей жизни, имеют неограниченный рост.

106. С чем связана необходимость поступления в кровь человека ионов железа? Ответ поясните.

Ответ:
1)ионы железа входят в состав гемоглобина эритроцитов;
2)гемоглобин эритроцитов обеспечивает транспорт кислорода и углекислого газа, так как способен связываться с этими газами;
3)поступление кислорода необходимо для энергетического обмена клетки, а углекислый газ — его конечный продукт, подлежащий удалению.

107. Объясните, почему людей разных рас относят к одному виду. Приведите не менее трех доказательств.

Ответ:
1)сходство строения, процессов жизнедеятельности, поведения;
2)генетическое единство — одинаковый набор хромосом, их строение;
3)от межрасовых браков появляется потомство, способное к размножению.

108. В древней Индии подозреваемому в преступлении предлагали проглотить горсть сухого риса. Если ему это не удавалось, виновность считалась доказанной. Дайте физиологическое обоснование этого процесса.

Ответ:
1)глотание — сложный рефлекторный акт, который сопровождается слюноотделением и раздражением корня языка;
2)при сильном волнении резко тормозится слюноотделение, во рту становится сухо, и глотательный рефлекс не возникает.

109. Найдите ошибки в приведённом тексте. Укажите номера предложений, в которых они сделаны, объясните их.
1. В состав пищевой цепи биогеоценоза входят продуценты, консументы и редуценты. 2. Первым звеном пищевой цепи являются консументы. 3. У консументов на свету накапливается энергия, усвоенная в процессе фотосинтез. 4. В темновой фазе фотосинтеза выделяется кислород. 5. Редуценты способствуют освобождению энергии, накопленной консументами и продуцентами.

Ошибки допущены в предложениях:
1)2 — первым звеном являются продуценты;
2)3 — консументы не способны к фотосинтезу;
3)4 — кислород выделяется в световой фазе фотосинтеза.

110. Каковы причины малокровия у человека? Укажите не менее трёх возможных причин.

Ответ:
1)большие кровопотери;
2)неполноценное питание (недостаток железа и витаминов и др.);
3)нарушение образования эритроцитов в кроветворных органах.

111. Муха-осовидка сходна по окраске и форме тела с осой. Назовите тип ее защитного приспособления, объясните его значение и относительный характер приспособленности.

Ответ:
1)тип приспособления — мимикрия, подражание окраски и формы тела незащищенного животного защищенному;
2)сходство с осой предупреждает возможного хищника об опасности быть ужаленным;
3)муха становится добычей молодых птиц, у которых еще не выработался рефлекс на осу.

112. Составьте пищевую цепь, используя все названные ниже объекты: перегной, паук-крестовик, ястреб, большая синица, комнатная муха. Определите консументов третьего порядка в составленной цепи.

Ответ:
1)перегной —> комнатная муха —> паук-крестовик —>большая синица —>ястреб;
2)консумент третьего порядка — большая синица.

113. Найдите ошибки в приведённом тексте. Укажите номера предложений, в ко-торых сделаны ошибки, исправьте их.
1. Кольчатые черви — это наиболее высокоорганизованные животные среза других типов червей. 2. Кольчатые черви имеют незамкнутую кровеносную систему. 3. Тело кольчатого червя состоит из одинаковых члеников. 4. Полость тела у кольчатых червей отсутствует. 5. Нервная система кольчатых червей представлена окологлоточным кольцом и спинной нервной цепочкой.

Ошибки допущены в предложениях:
1)2 — Кольчатые черви имеют замкнутую кровеносную систему;
2)4 — Кольчатые черви имеют полость тела;
3)5 — нервная цепочка расположена на брюшной стороне тела.

114. Назовите не менее трёх ароморфозов у наземных растений, которые позволили им первыми освоить сушу. Ответ обоснуйте.

Ответ:
1)возникновение покровной ткани — эпидермиса с устьицами, — способствующей защите от испарения;
2)появление проводящей системы, обеспечивающей транспорт веществ;
3)развитие механической ткани, выполняющей опорную функцию.

115. Объясните, с чем связано большое разнообразие сумчатых млекопитающих в Австралии и отсутствие их на других континентах.

Ответ:
1)Австралия отделилась от других материков в период расцвета сумчатых до появления плацентарных животных (географическая изоляция);
2)природные условия Австралии способствовали дивергенции признаков сумчатых и активному видообразованию;
3)на других континентах сумчатые были вытеснены плацентарными млекопитающими.

116. В каких случаях изменение последовательности нуклеотидов ДНК не влияет на структуру и функции соответствующего белка?

Ответ:
1)если в результате замены нуклеотида возникает другой кодон, кодирующий ту же аминокислоту;
2)если кодон, образовавшийся в результате замены нуклеотида, кодирует другую аминокислоту, но со сходными химическими свойствами, не изменяющую структуру белка;
3)если изменения нуклеотидов произойдут в межгенных или нефункционирующих участках ДНК.

117. Почему отношения между щукой и окунем в экосистеме реки считают кон-курентными?

Ответ:
1)являются хищниками, питаются сходной пищей;
2)обитают в одном водоёме, нуждаются в сходных условиях для жизни, взаимно угнетают друг друга.

118. Найдите ошибки в приведённом тексте. Укажите номера предложений, в ко-торых сделаны ошибки, исправьте их.
1. Основные классы типа членистоногих — Ракообразные, Паукообразные и Насекомые. 2. Насекомые имеют четыре пары ног, а паукообразные — три пары. 3. Речной рак имеет простые глаза, а паук-крестовик — сложные. 4. У паукообразных на брюшке расположены паутинные бородавки. 5. Паук-крестовик и майский жук дышат с помощью лёгочных мешков и трахей.

Ошибки допущены в предложениях:
1)2 — насекомые имеют три пары ног, а паукообразные — четыре пары;
2)3 — речной рак имеет сложные глаза, а паук-крестовик — простые;
3)5 — у майского жука нет лёгочных мешков, а имеются только трахеи.

119. Каковы особенности строения и жизнедеятельности шляпочных грибов? Назовите не менее четырех особенностей.

Ответ:
1)имеют грибницу и плодовое тело;
2)размножаются спорами и грибницей;
3)по способу питания — гетеротрофы;
4)большинство образуют микоризу.

120. Какие ароморфозы позволили древним земноводным освоить сушу.

Ответ:
1)появление лёгочного дыхания;
2)формирование расчлененных конечностей;
3)появление трехкамерного сердца и двух кругов кровообращения.

Данный видеоурок посвящен теме «Обеспечение клеток энергией». На этом занятии мы рассмотрим энергетические процессы в клетке и изучим, как происходит обеспечение клеток энергией. Вы узнаете также, что такое клеточное дыхание, из каких этапов оно состоит. Подробно обсудите каждый из этих этапов.

БИОЛОГИЯ 9 КЛАСС

Тема: Клеточный уровень

Урок 13. Обеспечение клеток энергией

Степанова Анна Юрьевна

к. б.н., доц. МГУИЭ

Москва

Сегодня мы поговорим об обеспечении клеток энергией. Энергия используется для различных химических реакций, протекающих в клетке. Одни организмы используют энергию солнечного света для биохимических процессов - это растения, а другие используют энергию химических связей в веществах, получаемых в процессе питания, - это животные организмы. Вещества из пищи извлекаются с помощью расщепления или биологического окисления в процессе клеточного дыхания.

Клеточное дыхание - это биохимический процесс в клетке, протекающий в присутствии ферментов, в результате которого выделяется вода и углекислый газ, энергия запасается в виде макроэнергетических связей молекул АТФ. Если этот процесс протекает в присутствии кислорода, то он носит название «аэробный». Если же он происходит без кислорода, то он называется «анаэробным.

Биологическое окисление включает три основных стадии:

1. ​Подготовительную,

2​. Бескислородную (гликолиз),

3​. Полное расщепление органических веществ (в присутствии кислорода).

Подготовительный этап. Поступившие с пищей вещества расщепляются до мономеров. Этот этап начинается в желудочно-кишечном тракте или в лизосомах клетки. Полисахариды распадаются на моносахариды, белки – на аминокислоты, жиры – на глицерины и жирные кислоты. Выделяющаяся на этой стадии энергия рассеивается в виде тепла. Надо отметить, что для энергетических процессов клетки используют именно углеводы, а лучше - моносахариды. А мозг может использовать для своей работы только моносахарид - глюкозу.

Глюкоза в процессе гликолиза распадается на две трехуглеродные молекулы пировиноградной кислоты. Дальнейшая их судьба зависит от присутствия в клетке кислорода. Если в клетке присутствует кислород, то пировиноградная кислота приходит в митохондрии для полного окисления до углекислого газа и воды (аэробное дыхание). Если кислорода нет, то в животных тканях пировиноградная кислота превращается в молочную кислоту. Эта стадия проходит в цитоплазме клетки. В результате гликолиза образуется всего две молекулы АТФ.

Для полного окисления глюкозы обязательно необходим кислород. На третьем этапе в митохондриях происходит полное окисление пировиноградной кислоты до углекислого газа и воды. В результате образуется еще 36 молекул АТФ.

Всего на трех этапах образуется 38 молекул АТФ из одной молекулы глюкозы, учитывая две АТФ, полученные в процессе гликолиза.

Таким образом, мы рассмотрели энергетические процессы, происходящие в клетках. Охарактеризовали этапы биологического окисления. На этом наш урок окончен, всего вам доброго, до свидания!

Отличие дыхания от горения . Дыхание, происходящее в клетке, нередко сравнивают с процессом горения. Оба процесса происходят в присутствии кислорода, выделении энергии и продуктов окисления. Но, в отличие от горения, дыхание - это упорядоченный процесс биохимических реакций, протекающий в присутствии ферментов. При дыхании углекислый газ возникает как конечный продукт биологического окисления, а в процессе горения образование углекислого газа происходит путем прямого соединения водорода с углеродом. Также во время дыхания образуется определенное количество молекул АТФ. То есть дыхание и горение - это принципиально разные процессы.

Биомедицинское значение. Для медицины важен не только метаболизм глюкозы, но также фруктозы и галактозы. Особенно важна в медицине способность к образованию АТФ в отсутствии кислорода. Это позволяет поддерживать интенсивную работу скелетной мышцы в условиях недостаточной эффективности аэробного окисления. Ткани с повышенной гликолитической активностью способны сохранять активность в периоды кислородного голодания. В сердечной мышце возможности осуществления гликолиза ограничены. Она тяжело переносит нарушение кровоснабжения, что может привести к ишемии. Известно несколько болезней, обусловленных отсутствием ферментов, которые регулируют гликолиз:

Гемолитическая анемия (в быстрорастущих раковых клетках гликолиз идет со скоростью превышающей возможности цикла лимонной кислоты), что способствует повышенному синтезу молочной кислоты в органах и тканях. Повышенное содержание молочной кислоты в организме может быть симптомом рака.

Брожение. Микробы способны получать энергию в процессе брожения. Брожение известно людям с незапамятных времен, например, при изготовлении вина. Еще ранее было известно о молочнокислом брожении. Люди потребляли молочные продукты, не подозревая, что эти процессы связаны с деятельностью микроорганизмов. Это впервые доказал Луи Пастер. Причем разные микроорганизмы выделяют разные продукты брожения. Сейчас мы поговорим о спиртовом и молочнокислом брожении. В результате образуется этиловый спирт, углекислота и выделяется энергия. Пивовары и виноделы использовали некоторые виды дрожжей для стимуляции брожения, в результате которого сахара превращаются в спирт. Брожение производят главным образом дрожжи, а также некоторые бактерии и грибы. В нашей стране традиционно используются дрожжи сахаромицеты. В Америке - бактерии рода псевдомонас. А в Мексике используются бактерии «подвижные палочки». Наши дрожжи, как правило, сбраживают гексозы (шестиуглеродные моносахариды), такие как глюкоза или фруктоза. Процесс образования спирта можно представить следующим образом: из одной молекулы глюкозы образуется две молекулы спирта, две молекулы углекислого газа и две молекулы АТФ. Этот способ менее выгоден, чем аэробные процессы, но позволяет поддерживать жизнь в условиях отсутствия кислорода. А теперь давайте поговорим о кисломолочном брожении. Одна молекула глюкозы образует две молекулы молочной кислоты и при этом выделяется две молекулы АТФ. Молочнокислое брожение широко используется для производства молочных продуктов: сыр, простокваша, йогурты. Также молочная кислота используется при изготовлении безалкогольных напитков.

  1. Типы питания живых организмов
  2. Фотосинтез
  3. Энергетический обмен

1. Жизнедеятельность всех организмов возможна толь­ко при наличии в них энергии. По способу получения энергии все клетки и организмы подразделяются на две группы: автотрофы и гетеротрофы.

Гетеротрофы (греч. heteros - иной, другой и trophe - пища, питание) не способны сами синтезировать орга­нические соединения из неорганических, они нужда­ются в поступлении их из окружающей среды. Орга­нические вещества служат для них не только пищей, но и источником энергии. К гетеротрофам относятся все животные, грибы, большинство бактерий, а также бесхлорофилльные наземные растения и водоросли.

Гетеротрофные организмы по способу получения пи­щи подразделяются на голозойных (животные), захва­тывающих твердые частицы, и осмотрофных (грибы, бактерии), питающихся растворенными веществами.

Многообразные гетеротрофные организмы способны в совокупности разлагать все вещества, которые синте­зируются автотрофами, а также минеральные вещества, синтезированные в результате производственной деятель­ности людей. Гетеротрофные организмы совместно с ав­тотрофами составляют на Земле единую биологическую систему, объединенную трофическими отношениями.

Автотрофы - организмы, питающиеся (т. е. полу­чающие энергию) за счет неорганических соединений это некоторые бактерии и все зеленые растения. Ав­тотрофы разделяются на хемотрофов и фототрофов.

Хемотрофы - организмы, использующие энергию, ос­вобождающуюся при окислительно-восстановительных реакциях. К хемотрофам относятся нитрифицирую­щие (азотфиксирующие) бактерии, серные, водородные (метанобразующие), марганцевые, железообразующие и бактерии, использующие оксид углерода.



Фототрофы - только зеленые растения. Источни­ком энергии для них является свет.

2. Фотосинтез (греч. phos - род. пад. photos - свет и synthesis - соединение) - образование при участии энер­гии света органических веществ клетками зеленых рас­тений, а также некоторыми бактериями, процесс преоб­разования энергии света в химическую. Происходит с помощью пигментов (хлорофилла и некоторых др.) в тилакоидах хлоропластов и хроматофорах клеток. В осно­ве фотосинтеза лежат окислительно-восстановительные реакции, в которых электроны переносятся от донора-восстановителя (вода, водород и др.) к акцептору (лат. acceptor - приемщик) - диоксиду углерода, ацетату с образованием восстановленных соединений - углево­дов и выделением кислорода, если окисляется вода.

Фотосинтезирующие бактерии, использующие иные, чем вода, доноры, кислород не выделяют.

Световые реакции фотосинтеза (вызываемые светом) протекают в гранах тилакоидов хлоропластов.Кванты видимого света (фотоны) взаимодействуют с молекулами хлорофилла, переводя их в возбужденное состояние. Электрон в составе хлорофилла поглощает квант света определенной длины и, как по ступеням, пе­ремещается по цепи переносчиков электронов, теряя энер­гию, которая служит для фосфорилирования АДФ в АТФ. Это очень эффективный процесс: в хлоропластах обра­зуется в 30 раз больше АТФ, чем в митохондриях тех же растений. Так накапливается энергия, необходимая для следующих - темновых реакций фотосинтеза. В каче­стве переносчиков электронов выступают вещества: цитохромы, пластохинон, ферредоксин, флавопротеид, редуктаза и др. Часть возбужденных электронов используется для восстановления НАДФ + в НАДФН. Под действием солнечного света в хлоропластах происходит расщепле­ние воды - фотолиз, при этом образуются электроны, которые возмещают потери их хлорофиллом; в качестве побочного продукта образуется кислород, выделяемый в атмосферу нашей планеты. Это тот кислород, которым дышим мы и который необходим всем аэробным орга­низмам.

В составе хлоропластов высших растений, водорослей и цианобактерий функционируют две фотосистемы раз­ного строения и состава. При поглощении квантов света пигментами (реакционным центром - комплексом хло­рофилла с белком, который поглощает свет с длиной волны 680 нм - Р680) фотосистемы II происходит перенос электронов от воды к промежуточному акцептору и че­рез цепь переносчиков к реакционному центру фотосистемы I. И этой фотосистеме реакционным центром яв­ит пен молекулы хлорофилла в комплексе с особым бел-КОМ, который поглощает свет с длиной волны 700 нм - Р700. В молекулах хлорофилла Ф1 существуют «ды­ры» - незаполненные места электронов, перешедших в ПЛДФН. Эти «дыры» заполняются электронами, образовавшимися в процессе функционирования ФИ. То есть фотосистема II поставляет электроны для фотосистемы I, которые расходуются в ней на восстановление НАДФ + и НАДФН. По пути движения возбужденных светом электронов фотосистемы II к конечному акцептору - хлорофиллу фотосистемы I происходит фосфорилирование АДФ в богатую энергией АТФ. Таким образом, энер­гия света запасается в молекулах АТФ и расходуется далее для синтеза углеводов, белков, нуклеиновых кис­лот и иных жизненных процессов растений, а через них и жизнедеятельности всех организмов, питающихся рас­тениями.

Темновые реакции, или реакции фиксации углеро­да, не связанные со светом, осуществляются в строме хло­ропластов. Ключевое место в них занимает фиксация углекислоты и превращение углерода в углеводы. Эти реакции носят циклический характер, так как часть промежуточных углеводов претерпевает процесс кон­денсации и перестроек до рибулозодифосфата - пер­вичного акцептора С0 2 , что обеспечивает непрерывную работу цикла. Впервые этот процесс описал американ­ский биохимик Мэлвин Кальвин

Превращение неорганического соединения С0 2 в ор­ганические соединения - углеводы, в химических свя­зях которых запасается солнечная энергия, происходит с помощью сложного фермента - рибулозо-1,5-дифосфат-карбоксилазы. Он обеспечивает присоединение одной мо­лекулы С0 2 к пятиуглеродному рибулозо-1,5-дифосфату, в результате чего образуется шестиуглеродное промежу­точное короткоживущее соединение. Это соединение вследствие гидролиза распадается на две трехуглеродные молекулы фосфоглицериновой кислоты, которая вос­станавливается с использованием АТФ и НАДФН до трехуглеродных сахаров (триозофосфатов). Из них и об­разуется конечный продукт фотосинтеза - глюкоза.

Часть триозофосфатов, пройдя процессы конденса­ций и перестроек, превращаясь сначала в рибулозомонофосфат, а затем и в рибулозодифосфат, включается снова в непрерывный цикл создания молекул глюкозы. Глюкоза может ферментативно полимеризоваться в

крахмал и целлюлозу - опорный полисахарид растений.

Особенностью фотосинтеза некоторых растений (са­харного тростника, кукурузы, амаранта) является пер­воначальное превращение углерода через четырехуглеродные соединения. Такие растения получили индекс С 4 -растения, а фотосинтез в них метаболизм уг­лерода. С 4 -растения привлекают внимание исследова­телей высокой фотосинтетической продуктивностью.

Пути повышения продуктивности сельскохозяйст­венных растений:

Достаточное минеральное питание, которое может обеспечивать наилучший ход обменных процессов;

Более полная освещенность, которая может быть достигнута с помощью определенных норм посева рас­тений с учетом потребления света светолюбивыми и теневыносливыми;

Нормальное количество углекислого газа в возду­хе (при увеличении его содержания нарушается процесс дыхания растений, который связан с фотосинтезом);

Увлажненность почвы, соответствующая потреб­ностям растений во влаге, зависящая от климатиче­ских и агротехнических условий.

Значение фотосинтеза в природе.

В результате фотосинтеза на Земле ежегодно образу­ется 150 млрд. т органического вещества и выделяется примерно 200 млрд. т свободного кислорода. Фотосинтез не только обеспечивает и поддерживает современный состав атмосферы Земли, необходимый для жизни ее обитателей, но и препятствует увеличению концентра­ции С0 2 в атмосфере, предотвращая перегрев нашей планеты (из-за так называемого парникового эффекта). Кислород, выделяемый при фотосинтезе, необходим для дыхания организмов и защиты их от губительного ко­ротковолнового ультрафиолетового излучения.

Хемосинтез (позднегреч. chemeta - химия и греч. synthesis - соединение) - автотрофный процесс со­здания органического вещества бактериями, не содер­жащими хлорофилл. Осуществляется хемосинтез за счет окисления неорганических соединений: водоро­да, сероводорода, аммиака, оксида железа (II) и др. Ус­воение С0 2 протекает, как и при фотосинтезе (цикл Кальвина), за исключением метанобразующих, гомо-ацетатных бактерий. Энергия, получаемая при окис­лении, запасается в бактериях в форме АТФ.

Хемосинтезирующим бактериям принадлежит ис­ключительно важная роль в биогеохимических цик­лах химических элементов в биосфере. Жизнедеятель­ность нитрифицирующих бактерий представляет собой один из важнейших факторов плодородия почвы. Хемосинтезирующие бактерии окисляют соединения же­леза, марганца, серы и др.

Хемосинтез открыт русским микробиологом Сер­геем Николаевичем Виноградским (1856-1953) в 1887 г.

3. Энергетический обмен

Три этапа энергетического обмена осуществляются при участии специальных ферментов в различных уча­стках клеток и организмов.

Первый этап - подготовительный - протекает (у животных в органах пищеварения) под действием ферментов, расщепляющих молекулы ди- и полисахаридом, жиров, белков, нуклеиновых кислот на более мелкие молекулы: глюкозы, глицерина и жирных кислот, аминокислот, нуклеотидов. При этом выделяется небольшое количество энергии, рассеивающейся в виде тепла.

Второй этап - бескислородный, или неполного окисления. Он называется также анаэробным дыханием (брожением), или гликолизом. Ферменты гликолиза локализованы в жидкой части цитоплазмы - гиалоплазме. Расщеплению подвергается глюкоза, каждая молен у in которой ступенчато расщепляется и окисляется при участии ферментов до двух трехуглеродных молекул пировиноградной кислоты СН 3 - СО - СООН, где СООН карбоксильная группа, характерная для органических кислот.

В этом превращении глюкозы последовательно участвуют девять ферментов. В процессе гликолиза про исходит окисление молекул глюкозы, т. е. теряются атомы водорода. Акцептором водорода (и электроном) в этих реакциях служат молекулы никотинамидаде ниндинуклеотида (НАД +), которые похожи по струн туре на НАДФ + и отличаются только отсутствием остатка фосфорной кислоты в молекуле рибозы. При восстановлении пировиноградной кислоты за счет восстановленного НАД возникает конечный продукт гликолиза - молочная кислота. В реакциях расщепления глюкозы участвуют фосфорная кислота и АТФ.

В суммарном виде этот процесс выглядит так:

С 6 Н 12 О 6 +2Н 3 Р0 4 +2АДФ = 2С 3 Н 6 0 3 +2АТФ + 2Н 2 0.

У дрожжевых грибов молекула глюкозы без участия кислорода превращается в этиловый спирт и ди­оксид углерода (спиртовое брожение):

С 6 Н 12 О 6 +2Н 3 Р0 4 +2АДФ - 2С 2 Н б 0Н+2С0 2 +2АТФ+2Н 2 О.

У некоторых микроорганизмов расщепление глю­козы без кислорода может завершиться образованием уксусной кислоты, ацетона и др. При этом во всех случаях распад одной молекулы глюкозы сопровожда­ется образованием двух молекул АТФ, в макроэргических связях которой сохраняется 40% энергии, осталь­ная рассеивается в виде теплоты.

Третий этап энергетического обмена (стадия кисло­родного расщепления, или стадия аэробного дыхания) осуществляется в митохондриях. Этот этап связан с матриксом митохондрий и внутренней мембраной; в нем участвуют ферменты, представляющие собой фермен­тативный кольцевой «конвейер», названный циклом Кребса, по имени ученого, который его открыл. Еще этот сложный и длительный путь работы многих фер­ментов называют циклом трикарбоновых кислот.

Попадая в митохондрию, пировиноградная кислота (ПВК) окисляется и превращается в богатое энергией вещество - ацетилкофермент А, или сокращенно ацетил-КоА. В цикле Кребса молекулы ацетил-КоА по­ступают из разных энергетических источников. В про­цессе окисления ПВК восстанавливаются акцепторы электронов НАД + в НАД-Н и происходит восстановле­ние акцепторов еще одного типа - ФАД в ФАДН 2 (ФАД - это флавинадениндинуклеотид). Энергия, за­пасенная в этих молекулах, используется для синтеза АТФ - универсального биологического аккумулято­ра энергии. В ходе стадии аэробного дыхания элект­роны от НАД-Н и ФАДН 2 перемещаются по многосту­пенчатой цепи их переноса к конечному акцептору электронов - молекулярному кислороду. В переносе участвуют несколько переносчиков электронов: кофермент Q, цитохромы и, самое главное, кислород. При пере­ходе электронов со ступени на ступень дыхательного кон­вейера освобождается энергия, которая расходуется на синтез АТФ. Внутри митохондрий катионы Н + , соеди­няясь с анионами О 2 ~, образуют воду. В цикле Кребса образуется С0 2 , и в цепи переноса электронов - вода. При этом одна молекула глюкозы, полностью окисля­ясь при доступе кислорода до С0 2 и Н 2 0, способствует образованию 38 молекул АТФ. Из вышесказанного следует, что основную роль в обеспечении клетки энергией играет кислородное расщепление органических веществ, или аэробное ды­хание. При дефиците кислорода или полном его от­сутствии происходит бескислородное, анаэробное, рас­щепление органических веществ; энергии такого процесса хватает только на создание двух молекул АТФ. Благодаря этому живые существа могут корот­кое время обходиться без кислорода.

Живой клетке внутренне присуща неустойчивая и почти неправдоподобная организация; клетка способна сохранять весьма специфичную и прекрасную в своей сложности упорядоченность своей хрупкой структуры только благодаря непрерывному потреблению энергии.

Как только поступление энергии прекращается, сложная структура клетки распадается и она переходит в неупорядоченное и лишенное организации состояние. Помимо обеспечения химических процессов, необходимых для поддержания целостности клетки, в различных типах клеток за счет превращения энергии обеспечивается осуществление разнообразных механических, электрических, химических и осмотических процессов, связанных с жизнедеятельностью организма.

Научившись в сравнительно недавнее время извлекать энергию, заключенную в различных неживых источниках, для выполнения различной работы, человек начал постигать, как мастерски и с какой высокой эффективностью производит превращение энергии клетка. Превращение энергии в живой клетке подчиняется тем же самым законам термодинамики, которые действуют в неживой природе. Согласно первому закону термодинамики, общая энергия замкнутой системы при любом физическом изменении всегда остается постоянной. Согласно второму закону, энергия может существовать в двух формах: в форме «свободной», или полезной, энергии и в форме бесполезной рассеиваемой энергии. Тот же закон утверждает, что при любом физическом изменении наблюдается тенденция к рассеянию энергии, т. е. к уменьшению количества свободной энергии и к возрастанию энтропии. Между тем живая клетка нуждается в постоянном притоке свободной энергии.

Инженер получает необходимую ему энергию главным образом за счет энергии химических связей, заключенной в горючем. Сжигая горючее, он превращает химическую энергию в тепловую; затем он может использовать тепловую энергию для вращения, например, паровой турбины и таким путем получить электрическую энергию. Клетки также получают свободную энергию за счет освобождения энергии химических связей, заключенной в «горючем». Энергия запасается в этих связях теми клетками, которые синтезируют питательные вещества, служащие таким горючим. Однако клетки используют эту энергию весьма специфическим «образом. Поскольку температура, при которой живая клетка функционирует, примерно постоянна, клетка не может использовать тепловую энергию, чтобы производить работу. Для того чтобы за счет тепловой энергии могла происходить работа, теплота должна переходить от более нагретого тела к менее нагретому. Совершенно ясно, что клетка не может сжигать свое горючее при температуре сгорания угля (900°); не может она также выдержать воздействие перегретым паром или током высокого напряжения. Клетке приходится добывать и использовать энергию в условиях довольно постоянной и притом низкой температуры, разбавленной йодной среды и весьма незначительных колебаний концентрации водородных ионов. Для того чтобы приобрести возможность получать энергию, клетка на протяжении многовековой эволюции органического мира совершенствовала свои замечательные молекулярные механизмы, которые необыкновенно эффективно действуют в этих мягких условиях.

Механизмы клетки, обеспечивающие извлечение энергии, делятся на два класса, и на основании различия в этих механизмах все клетки можно разбить на два основных типа. Клетки первого типа называют гетеротрофными; к ним относятся все клетки организма человека и клетки всех высших животных. Этим клеткам необходим постоянный приток готового горючего весьма сложного химического состава. Таким горючим служат для них углеводы, белки и жиры, т. е. отдельные составные части других клеток и тканей. Гетеротрофные клетки получают энергию, сжигая или окисляя эти сложные вещества (вырабатываемые другими клетками) в процессе, который называется дыханием и в котором участвует молекулярный кислород (О 2) атмосферы. Гетеротрофные клетки используют эту энергию для выполнения своих биологических функций, выделяя при этом в атмосферу двуокись углерода в качестве конечного продукта.

Клетки, принадлежащие ко второму типу, называют автотрофными. Наиболее типичные автотрофные клетки - это клетки зеленых растений. В процессе фотосинтеза они связывают энергию солнечного света, используя ее для своих нужд. Кроме того, они при помощи солнечной энергии добывают углерод из атмосферной двуокиси углерода и используют его для построения простейшей органической молекулы - молекулы глюкозы. Из глюкозы клетки зеленых растений и других организмов создают более сложные молекулы, входящие в их состав. Чтобы обеспечить необходимую для этого энергию, клетки в процессе дыхания сжигают часть имеющегося в их распоряжении сырья. Из этого описания циклических превращений энергии в клетке становится ясно, что все живые организмы в конечном счете получают энергию от солнечного света, причем растительные клетки получают ее непосредственно от солнца, а животные - косвенным путем.

Изучение основных поставленных в этой статье вопросов упирается в необходимость подробного описания первичного механизма извлечения энергии, используемого клеткой. Большая часть ступеней сложных циклов дыхания и фотосинтеза уже исследована. Установлено, в каком именно органе клетки происходит тот или иной процесс. Дыхание осуществляется митохондриями, имеющимися в большом числе почти во всех клетках; фотосинтез обеспечивают хлоропласты - цитоплазматические структуры, содержащиеся в клетках зеленых растений. Молекулярные механизмы, которые находятся в этих клеточных образованиях, составляя их структуру и обеспечивая выполнение их функций, представляют собой следующий важный этап в изучении клетки.

Одни и те же хорошо изученные молекулы - молекулы аденозинтрифосфата (АТФ) - переносят полученную за счет питательных веществ или солнечного света свободную энергию от центров дыхания или фотосинтеза во все участки клетки, обеспечивая осуществление всех процессов, протекающих с потреблением энергии. Впервые АТФ был выделен из мышечной ткани Ломаном около 30 лет назад. Молекула АТФ содержит три связанные между собой фосфатные группы. В пробирке концевую группу можно отделить от молекулы АТФ путем реакции гидролиза, в результате которой получается аденозиндифосфат (АДФ) и неорганический фосфат. В процессе этой реакции свободная энергия молекулы АТФ превращается в тепловую энергию, а энтропия при этом в соответствии со вторым законом термодинамики возрастает. В клетке, однако, концевая фосфатная группа в процессе гидролиза не просто отделяется, но переносится на особую молекулу, служащую акцептором. Значительная часть свободной энергии молекулы АТФ при этом сохраняется благодаря фосфорилированию молекулы-акцептора, которая теперь за счет возросшей энергии приобретает возможность участвовать в процессах, протекающих с потреблением энергии, например, в процессах биосинтеза или мышечного сокращения. После отщепления одной фосфатной группы в процессе этой сопряженной реакции АТФ превращается в АДФ. В термодинамике клетки АТФ можно рассматривать как богатую энергией, или «заряженную», форму носителя энергии (аденозинфосфата), а АДФ - как бедную энергией, или «разряженную», форму.

Вторичная «зарядка» носителя производится, конечно, тем или другим из двух механизмов, участвующих в извлечении энергии. В процессе дыхания животных клеток энергия, заключенная в питательных веществах, освобождается в результате окисления и расходуется на построение АТФ из АДФ и фосфата. При фотосинтезе в растительных клетках энергия солнечного света превращается в химическую энергию и расходуется на «зарядку» аденозинфосфата, т. е. на образование АТФ.

Эксперименты с использованием радиоактивного изотопа фосфора (Р 32) показали, что неорганический фосфат с большой скоростью включается в концевую фосфатную группу АТФ и вновь выходит из нее. В клетке почки обновление концевой фосфатной группы происходит так быстро, что ее период полупревращения занимает меньше 1 минуты; это соответствует чрезвычайно интенсивному обмену энергии в клетках этого органа. Следует добавить, что деятельность АТФ в живой клетке - отнюдь не черная магия. Химикам известны многие аналогичные реакции, при помощи которых происходит перенос химической энергии в неживых системах. Сравнительно сложная структура АТФ, по-видимому, возникла только в клетке - для обеспечения наиболее эффективной регуляции химических реакций, связанных с переносом энергии.

Роль АТФ в фотосинтезе удалось выяснить лишь недавно. Это открытие позволило в значительной мере объяснить, каким образом фотосинтезирующие клетки в процессе синтеза углеводов связывают солнечную энергию - первичный источник энергии всех живых существ.

Энергия солнечного света передается в виде фотонов, или квантов; свет различной окраски, или разной длины волны, характеризуется различной энергией. При падении света на некоторые металлические поверхности и поглощении его этими поверхностями фотоны в результате столкновения с электронами металла передают им свою энергию. Этот фотоэлектрический эффект можно измерить благодаря возникающему при этом электрическому току. В клетках зеленых растений солнечный свет с определенными длинами волн поглощается зеленым пигментом - хлорофиллом. Поглощенная энергия переводит электроны в сложной молекуле хлорофилла с основного энергетического уровня на более высокий уровень. Подобные «возбужденные» электроны стремятся вновь возвратиться на свой основной стабильный энергетический уровень, отдавая при этом поглощенную ими энергию. В чистом препарате хлорофилла, выделенного из клетки, поглощенная энергия вновь испускается в форме видимого света, аналогично тому, как это происходит в случае других фосфоресцирующих или флуоресцирующих органических и неорганических соединений.

Таким образом, хлорофилл, находясь в пробирке, сам по себе не способен запасать или использовать энергию света; энергия эта быстро рассеивается, как если бы произошло короткое замыкание. Однако в клетке хлорофилл стерически связан с другими специфическими молекулами; поэтому, когда он под влиянием поглощения света приходит в возбужденное состояние, «горячие», или богатые энергией, электроны не возвращаются в свое нормальное (невозбужденное) энергетическое состояние; вместо этого электроны отрываются от молекулы хлорофилла и переносятся молекулами - переносчиками электронов, которые передают их друг другу по замкнутой цепи реакций. Проделывая этот путь вне молекулы хлорофилла, возбужденные электроны постепенно отдают свою энергию и возвращаются на свои прежние места в молекуле хлорофилла, которая после этого оказывается готовой к поглощению второго фотона. Тем временем энергия, отданная электронами, используется на образование АТФ из АДФ и фосфата - иными словами, на «зарядку» аденозинфосфатной системы фотосинтезирующей клетки.

Переносчики электронов, служащие посредниками в этом процессе фотосинтетического фосфорилирования, еще не вполне установлены. Один из таких переносчиков, по-видимому, содержит рибофлавин (витамин В 2) и витамин К. Другие предварительно отнесены к цитохромам (белки, содержащие атомы железа, окруженные порфириновыми группами, которые по расположению и строению напоминают порфирин самого хлорофилла). По крайней мере два из этих переносчиков электронов способны обеспечить связывание части переносимой ими энергии для восстановления АТФ из АДФ.

Такова основная схема превращения энергии света в энергию фосфатных связей АТФ, разработанная Д. Арноном и другими учеными.

Однако в процессе фотосинтеза происходит, помимо связывания солнечной энергии, еще и синтез углеводов. В настоящее время полагают, что некоторые из «горячих» электронов возбужденной молекулы хлорофилла вместе с ионами водорода, происходящими из воды, вызывают восстановление (т. е. получение дополнительных электронов или атомов водорода) одного из переносчиков электронов - трифосфопиридиннуклеотида (ТПН, в восстановленной форме ТПН-Н).

В процессе ряда темновых реакций, названных так потому, что они могут происходить в отсутствие света, ТПН-Н вызывает восстановление двуокиси углерода до углевода. Большую часть необходимой для этих реакций энергии доставляет АТФ. Характер этих темновых реакций исследован главным образом М. Кальвином и его сотрудниками. Одним из побочных продуктов первоначального фотовосстановления ТПН служит ион гидроксила (ОН —). Хотя мы еще не располагаем полными данными, предполагается, что этот ион отдает свой электрон одному из цитохромов в цепи фотосинтетических реакций, конечным продуктом которых оказывается молекулярный кислород. Электроны движутся по цепи переносчиков, внося свой энергетический вклад в образование АТФ, и, в конце концов растратив всю свою избыточную энергию, попадают в молекулу хлорофилла.

Как и следовало ожидать на основании строго закономерного и последовательного Характера процесса фотосинтеза, молекулы хлорофилла расположены в хлоропластах не беспорядочно и, уж конечно, не просто суспендированы в наполняющей хлоропласты жидкости. Напротив, молекулы хлорофилла образуют в хлоропластах упорядоченные структуры - граны, между которыми располагается разделяющее их переплетение волокон или мембран. Внутри каждой граны плоские молекулы хлорофилла лежат стопками; каждую молекулу можно считать аналогичной отдельной пластинке (электроду) элемента, граны - элементам, а совокупность гран (т. е. весь хлоропласт) - электрической батарее.

Хлоропласты содержат также все те специализированные молекулы - переносчики электронов, которые вместе с хлорофиллом участвуют в извлечении энергии из «горячих» электронов и используют эту энергию для синтеза углеводов. Извлеченные из клетки хлоропласты могут осуществлять весь сложнейший процесс фотосинтеза.

Эффективность этих миниатюрных фабрик, работающих на солнечной энергии, поразительна. В лаборатории при соблюдении некоторых специальных условий можно показать, что в процессе фотосинтеза до 75% света, падающего на молекулу хлорофилла, превращается в химическую энергию; правда, цифру эту нельзя считать вполне точной, и по этому поводу еще происходят дебаты. В поле вследствие неодинаковой освещенности листьев солнцем, а также по ряду других причин эффективность использования солнечной энергии гораздо ниже - порядка нескольких процентов.

Таким образом, молекула глюкозы, представляющая собой конечный продукт фотосинтеза, должна содержать довольно значительное количество солнечной энергии, заключенной в ее молекулярной конфигурации. В процессе дыхания гетеротрофные клетки извлекают эту энергию, постепенно расщепляя молекулу глюкозы, с тем чтобы «законсервировать» содержавшуюся в ней энергию во вновь образующихся фосфатных связях АТФ.

Существуют разные типы гетеротрофных клеток. Одни клетки (например, некоторые морские микроорганизмы) могут жить без кислорода; другим (например, клеткам мозга) кислород абсолютно необходим; третьи (например, мышечные клетки) более разносторонни и способны функционировать как при наличии кислорода в среде, так и при его отсутствии. Кроме того, хотя большинство клеток предпочитает использовать в качестве основного горючего глюкозу, некоторые из них могут существовать исключительно за счет аминокислот или жирных кислот (главным сырьем для синтеза которых служит все та же глюкоза). Тем не менее расщепление молекулы глюкозы в клетках печени можно считать примером процесса получения энергии, типичным для большинства известных нам гетеротрофов.

Общее количество энергии, содержащейся в молекуле глюкозы, определить весьма просто. Сжигая определенное количество (пробу) глюкозы в лаборатории, можно показать, что при окислении молекулы глюкозы образуется 6 молекул воды и 6 молекул двуокиси углерода, причем реакция сопровождается выделением энергии в виде тепла (примерно 690 000 калорий на 1 грамм-молекулу, т. е. на 180 граммов глюкозы). Энергия в форме тепла, конечно, бесполезна для клетки, которая функционирует при практически постоянной температуре. Постепенное окисление глюкозы в процессе дыхания происходит, однако, таким образом, что большая часть свободной энергии молекулы глюкозы сохраняется в удобной для клетки форме.

В итоге клетка получает более 50% всей освободившейся при окислении энергии в форме энергии фосфатных связей. Такой высокий к. п. д. выгодно отличается от того, который обычно достигается в технике, где редко удается превратить в механическую или электрическую энергию более одной трети тепловой энергии, получаемой при сгорании топлива.

Процесс окисления глюкозы в клетке делится на две основные фазы. Во время первой, или подготовительной, фазы, называемой гликолизом, происходит расщепление шестиуглеродной молекулы глюкозы на две трехуглеродные молекулы молочной кислоты. Этот, казалось бы, простой процесс состоит не из одной, а по меньшей мере из 11 ступеней, причем каждая ступень катализируется своим особым ферментом. Может показаться, что сложность этой операции противоречит афоризму Ньютона «Natura entm simplex esi» («природа проста»); однако следует помнить, что назначение этой реакции заключается не в том, чтобы просто расщепить молекулу глюкозы пополам, а в том, чтобы выделить из этой молекулы заключенную в ней энергию. Каждый из промежуточных продуктов содержит фосфатные группы, и в итоге в процессе реакции используются две молекулы АДФ и две фосфатные группы. В конечном счете в результате расщепления глюкозы образуется не только две молекулы молочной кислоты, но, кроме того, еще и две новые молекулы АТФ.

К чему это приводит в энергетическом выражении? Термодинамические уравнения показывают, что при расщеплении одной грамм-молекулы глюкозы с образованием молочной кислоты выделяется 56 000 калорий. Поскольку при образовании каждой грамм-молекулы АТФ связывается 10000 калорий, эффективность процесса улавливания энергии составляет на этой ступени около 36 % - весьма внушительная цифра, если исходить из того, с чем обычно приходится иметь дело в технике. Однако эти 20 000 калорий, превращенные в энергию фосфатных связей, представляют собой лишь ничтожную часть (около 3%) всей энергии, заключенной в грамм-молекуле глюкозы (690 000 калорий). Между тем многие клетки, например, анаэробные клетки или мышечные клетки, находящиеся в состоянии активности (и в это время неспособные к дыханию), существуют за счет этого ничтожного по своей эффективности использования энергии.

После расщепления глюкозы до молочной кислоты аэробные клетки продолжают извлекать большую часть оставшейся энергии в процессе дыхания, во время которого трехуглеродные молекулы молочной кислоты расщепляются на одноуглеродные молекулы двуокиси углерода. Молочная кислота, или, вернее, ее окисленная форма - пировиноградная кислота, претерпевает еще более сложный ряд реакций, причем каждая из этих реакций опять-таки катализируется особой ферментной системой. Сначала трехуглеродное соединение распадается с образованием активированной формы уксусной кислоты (ацетилкофермента А) и двуокиси углерода. Затем «двухуглеродный фрагмент» (ацетилкофермент А) соединяется с четырехуглеродным соединением, щавелевоуксусной кислотой, в результате чего получается лимонная кислота, содержащая шесть атомов углерода. Лимонная кислота в процессе ряда реакций вновь превращается в щавелевоуксусную кислоту, и три углеродных атома пировиноградной кислоты, «поданные» в этот цикл реакций, в конечном счете дают молекулы двуокиси углерода. Эта «мельница», которая «перемалывает» (окисляет) не только глюкозу, но также молекулы жиров и аминокислот, предварительно расщепленные до уксусной кислоты, известна под названием цикла Кребса или цикла лимонной кислоты.

Впервые цикл был описан Г. Кребсом в 1937 г. Открытие это представляет собой один из краеугольных камней современной биохимии, и его автор был удостоен в 1953 г. Нобелевской премии.

Цикл Кребса позволяет проследить окисление молочной кислоты до двуокиси углерода; однако одним этим циклом нельзя объяснить, каким образом заключенные в молекуле молочной кислоты большие количества энергии удается извлечь в форме, пригодной для использования в живой клетке. Этот процесс извлечения энергии, сопровождающий цикл Кребса, в последние годы интенсивно изучается. Общая картина более или менее выяснилась, однако многие детали еще предстоит исследовать. По-видимому, в течение цикла Кребса электроны при участии ферментов отрываются от промежуточных продуктов и передаются по ряду молекул-переносчиков, объединяемых под общим названием дыхательной цепи. Эта цепь ферментных молекул представляет собой конечный общий путь всех электронов, отторгнутых от молекул питательных веществ в процессе биологического окисления. В последнем звене этой цепи электроны в конце концов соединяются с кислородом и образуется вода. Таким образом, распад питательных веществ при дыхании представляет собой процесс, обратный процессу фотосинтеза, при котором удаление электронов из воды приводит к образованию кислорода. Более того, переносчики электронов в дыхательной цепи химически весьма сходны с соответствующими переносчиками, участвующими в процессе фотосинтеза. Среди них имеются, например, рибофлавиновые и цитохромные структуры, сходные с аналогичными структурами хлоропласта. Тем самым подтверждается афоризм Ньютона о простоте природы.

Как и при фотосинтезе, энергия электронов, переходящих по этой цепи к кислороду, улавливается и используется для синтеза АТФ из АДФ и фосфата. Собственно говоря, это происходящее в дыхательной цепи фосфорилирование (окислительное фосфорилирование) изучено лучше, чем фосфорилирование, происходящее при фотосинтезе, которое открыто сравнительно недавно. Твердо установлено, например, существование в дыхательной цепи трех центров, в которых происходит «зарядка» аденозинфосфата, т. е. образование АТФ. Таким образом, на каждую пару электронов, отщепленных от молочной кислоты в течение цикла Кребса, образуется в среднем по три молекулы АТФ.

На основании общего выхода АТФ в настоящее время можно рассчитать термодинамическую эффективность, с которой клетка извлекает энергию, ставшую ей доступной благодаря окислению глюкозы. Предварительное расщепление глюкозы на две молекулы молочной кислоты дает две молекулы АТФ. Каждая молекула молочной кислоты в конечном счете передает в дыхательную цепь шесть пар электронов. Поскольку каждая пара электронов, проходящая по цепи, вызывает превращение трех молекул АДФ в АТФ, в процессе собственно дыхания образуется 36 молекул АТФ. При образовании каждой грамм-молекулы АТФ связывается, как мы уже указывали, около 10 000 калорий и, следовательно, 38 грамм-молекул АТФ связывают примерно 380000 из 690000 калорий, содержавшихся в исходной грамм-молекуле глюкозы. Эффективность сопряженных процессов гликолиза и дыхания можно, таким образом, считать равной по крайней мере 55%.

Чрезвычайная сложность процесса дыхания служит еще одним указанием на то, что участвующие в нем ферментные механизмы не могли бы функционировать, если бы составные части были просто перемешаны в растворе. Подобно тому, как молекулярные механизмы, связанные с фотосинтезом, имеют определенную структурную организацию и заключены в хлоропласте, так и органы дыхания клетки - митохондрии - представляют собой такую же структурно упорядоченную систему.

В клетке в зависимости от ее типа и характера ее функции может находиться от 50 до 5000 митохондрий (клетка печени содержит, например, около 1000 митохондрий). Они достаточно велики (3-4 микрона в длину), чтобы их можно было видеть в обычный микроскоп. Однако ультраструктура митохондрий различима лишь в электронный микроскоп.

На электронных микрофотографиях можно видеть, что митохондрия имеет две мембраны, причем внутренняя мембрана образует складки, заходящие в тело митохондрии. Проведенное недавно исследование митохондрий, выделенных из клеток печени, показало, что молекулы ферментов, участвующих в цикле Кребса, расположены в матриксе, или растворимой части внутреннего содержимого митохондрий, тогда как ферменты дыхательной цепи в форме молекулярных «ансамблей» расположены в мембранах. Мембраны состоят из чередующихся слоев молекул белка и липидов (жиров); такое же строение имеют мембраны в гранах хлоропластов.

Таким образом, существует явное сходство в строении этих двух главных «силовых станций», от которых зависит вся жизнедеятельность клетки, ибо одна из них «запасает» солнечную энергию в фосфатных связях АТФ, а другая превращает энергию, заключенную в питательных веществах, в энергию АТФ.

Успехи современной химии и физики позволили недавно уточнить пространственное строение некоторых больших молекул, например, молекул ряда белков и ДНК, т. е. молекул, содержащих генетическую информацию.

Следующий важный этап изучения клетки состоит в том, чтобы выяснить расположение больших ферментных молекул (которые сами представляют собой белки) в мембранах митохондрий, где они находятся вместе с липидами - расположение, обеспечивающее надлежащую ориентацию каждой молекулы катализатора и возможность ее взаимодействия с последующим звеном всего рабочего механизма. «Монтажная схема» митохондрии уже ясна!

Современные сведения относительно силовых установок клетки показывают, что она оставляет далеко позади не только классическую энергетику, но и новейшие, гораздо более блистательные достижения техники.

Электроника достигла поразительных успехов в компоновке и уменьшении размеров составных элементов счетно-решающих устройств. Однако все эти успехи не идут ни в какое сравнение с совершенно невероятной миниатюрностью сложнейших механизмов превращения энергии, выработанных в процессе органической эволюции и имеющихся в каждой живой клетке.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Преизобильное ращение тучных дерев,
которые на бесплодном песку корень
свой утвердили, ясно изъявляет, что
жирными листами жирный тук из воздуха
впитывают...
М. В. Ломоносов

Как энергия запасается в клетке? Что такое метаболизм? В чем суть процессов гликолиза, брожения и клеточного дыхания? Какие процессы проходят на световой и темновой фазах фотосинтеза? Как связаны процессы энергетического и пластического обмена? Что представляет собой хемосинтез?

Урок-лекция

Способность преобразовывать одни виды энергии в другие (энергию излучения в энергию химических связей, химическую энергию в механическую и т. п.) относится к числу фундаментальных свойств живого. Здесь мы подробно рассмотрим, каким образом реализуются эти процессы у живых организмов.

АТФ - ГЛАВНЫЙ ПЕРЕНОСЧИК ЭНЕРГИИ В КЛЕТКЕ . Для осуществления любых проявлений жизнедеятельности клеток необходима энергия. Автотрофные организмы получают исходную энергию от Солнца в ходе реакций фотосинтеза, гетеротрофные же в качестве источника энергии используют органические соединения, поступающие с пищей. Энергия запасается клетками в химических связях молекул АТФ (аденозинтрифосфат) , которые представляют собой нуклеотид, состоящий из трех фосфатных групп, остатка сахара (рибозы) и остатка азотистого основания (аденина) (рис. 52).

Рис. 52. Молекула АТФ

Связь между фосфатными остатками получила название макроэргической, поскольку при ее разрыве выделяется большое количество энергии. Обычно клетка извлекает энергию из АТФ, отщепляя только концевую фосфатную группу. При этом образуется АДФ (аденозиндифосфат), фосфорная кислота и освобождается 40 кДж/моль:

Молекулы АТФ играют роль универсальной энергетической разменной монеты клетки. Они поставляются к месту протекания энергоемкого процесса, будь то ферментативный синтез органических соединений, работа белков - молекулярных моторов или мембранных транспортных белков и др. Обратный синтез молекул АТФ осуществляется путем присоединения фосфатной группы к АДФ с поглощением энергии. Запасание клеткой энергии в виде АТФ осуществляется в ходе реакций энергетического обмена . Он тесно связан с пластическим обменом , в ходе которого клетка производит необходимые для ее функционирования органические соединения.

ОБМЕН ВЕЩЕСТВ И ЭНЕРГИИ В КЛЕТКЕ (МЕТАБОЛИЗМ) . Метаболизм - совокупность всех реакций пластического и энергетического обмена, связанных между собой. В клетках постоянно идет синтез углеводов, жиров, белков, нуклеиновых кислот. Синтез соединений всегда идет с затратой энергии, т. е. при непременном участии АТФ. Источниками энергии для образования АТФ служат ферментативные реакции окисления поступающих в клетку белков, жиров и углеводов. В ходе этого процесса высвобождается энергия, которая аккумулируется в АТФ. Особую роль в энергетическом обмене клетки играет окисление глюкозы. Молекулы глюкозы претерпевают при этом ряд последовательных превращений.

Первый этап, получивший название гликолиз , проходит в цитоплазме клеток и не требует кислорода. В результате последовательных реакций с участием ферментов глюкоза распадается на две молекулы пировиноградной кислоты. При этом расходуются две молекулы АТФ, а высвобождающейся при окислении энергии достаточно для образования четырех молекул АТФ. В итоге энергетический выход гликолиза невелик и составляет две молекулы АТФ:

С 6 Н1 2 0 6 → 2С 3 Н 4 0 3 + 4Н + + 2АТФ

В анаэробных условиях (при отсутствии кислорода) дальнейшие превращения могут быть связаны с различными типами брожений .

Всем известно молочнокислое брожение (скисание молока), которое происходит благодаря деятельности молочнокислых грибков и бактерий. По механизму оно сходно с гликолизом, только окончательным продуктом здесь является молочная кислота. Этот тип окисления глюкозы происходит в клетках при дефиците кислорода, например в интенсивно работающих мышцах. Близко по химизму к молочнокислому и спиртовое брожение. Различие заключается в том, что продуктами спиртового брожения являются этиловый спирт и углекислый газ.

Следующий этап, в ходе которого пировиноградная кислота окисляется, до углекислого газа и воды, получил название клеточное дыхание . Связанные с дыханием реакции проходят в митохондриях растительных и животных клеток, и только при наличии кислорода. Это ряд химических превращений до образования конечного продукта - углекислого газа. На различных этапах такого процесса образуются промежуточные продукты окисления исходного вещества с отщеплением атомов водорода. При этом освобождается энергия, которая «консервируется» в химических связях АТФ, и образуются молекулы воды. Становится понятным, что именно для того, чтобы связать отщепленные атомы водорода, и требуется кислород. Данный ряд химических превращений достаточно сложный и происходит с участием внутренних мембран митохондрий, ферментов, белков-переносчиков.

Клеточное дыхание имеет очень высокую эффективность. Происходит синтез 30 молекул АТФ, еще две молекулы образуются при гликолизе, и шесть молекул АТФ - как результат превращений продуктов гликолиза на мембранах митохондрий. Всего в результате окисления одной молекулы глюкозы образуются 38 молекул АТФ:

C 6 H 12 O 6 + 6Н 2 0 → 6CO 2 + 6H 2 O + 38АТФ

В митохондриях происходят конечные этапы окисления не только сахаров, но также белков и липидов. Эти вещества используются клетками, главным образом когда подходит к концу запас углеводов. Вначале расходуется жир, при окислении которого выделяется существенно больше энергии, чем из равного объема углеводов и белков. Поэтому жир у животных представляет собой основной «стратегический резерв» энергетических ресурсов. У растений же роль энергетического резерва играет крахмал. При хранении он занимает значительно больше места, чем энергетически эквивалентное ему количество жира. Для растений это не служит помехой, поскольку они неподвижны и не носят, как животные, запасы на себе. Извлечь же энергию из углеводов можно гораздо быстрее, чем из жиров. Белки выполняют в организме многие важные функции, поэтому вовлекаются в энергетический обмен только при исчерпании ресурсов сахаров и жиров, например при длительном голодании.

ФОТОСИНТЕЗ . Фотосинтез - это процесс, в ходе которого энергия солнечных лучей преобразуется в энергию химических связей органических соединений. В растительных клетках связанные с фотосинтезом процессы протекают в хлоропластах. Внутри этой органеллы находятся системы мембран, в которые встроены пигменты, улавливающие лучистую энергию Солнца. Основной пигмент фотосинтеза - хлорофилл, который поглощает преимущественно синие и фиолетовые, а также красные лучи спектра. Зеленый свет при этом отражается, поэтому сам хлорофилл и содержащие его части растений кажутся зелеными.

В фотосинтезе выделяют две фазы - световую и темновую (рис. 53). Собственно улавливание и преобразование лучистой энергии происходит во время световой фазы. При поглощении квантов света хлорофилл переходит в возбужденное состояние и становится донором электронов. Его электроны передаются от одного белкового комплекса к другому по цепи переноса электронов. Белки этой цепи, как и пигменты, сосредоточены на внутренней мембране хлоропластов. При переходе электрона по цепи переносчиков он теряет энергию, которая используется для синтеза АТФ. Часть возбужденных светом электронов используется для восстановления НДФ (никотинамидадениндинуклеотифосфат), или НАДФ·Н.

Рис. 53. Продукты реакций световой и темновой фаз фотосинтеза

Под действием солнечного света в хлоропластах происходит также расщепление молекул воды - фотолиз ; при этом возникают электроны, которые возмещают потери их хлорофиллом; в качестве побочного продукта при этом образуется кислород:

Таким образом, функциональный смысл световой фазы заключается в синтезе АТФ и НАДФ·Н путем преобразования световой энергии в химическую.

Для реализации темновой фазы фотосинтеза свет не нужен. Суть проходящих здесь процессов заключается в том, что полученные в световую фазу молекулы АТФ и НАДФ·Н используются в серии химических реакций, «фиксирующих» СОг в форме углеводов. Все реакции темновой фазы осуществляются внутри хлоропластов, а освобождающиеся при «фиксации» углекислоты АДФ и НАДФ вновь используются в реакциях световой фазы для синтеза АТФ и НАДФ·Н.

Суммарное уравнение фотосинтеза имеет следующий вид:

ВЗАИМОСВЯЗЬ И ЕДИНСТВО ПРОЦЕССОВ ПЛАСТИЧЕСКОГО И ЭНЕРГЕТИЧЕСКОГО ОБМЕНА . Процессы синтеза АТФ происходят в цитоплазме (гликолиз), в митохондриях (клеточное дыхание) и в хлоропластах (фотосинтез). Все осуществляющиеся в ходе этих процессов реакции - это реакции энергетического обмена. Запасенная в виде АТФ энергия расходуется в реакциях пластического обмена для производства необходимых для жизнедеятельности клетки белков, жиров, углеводов и нуклеиновых кислот. Заметим, что темновая фаза фотосинтеза - это цепь реакций, пластического обмена, а световая - энергетического.

Взаимосвязь и единство процессов энергетического и пластического обмена хорошо иллюстрирует следующее уравнение:

При чтении этого уравнения слева направо получается процесс окисления глюкозы до углекислого газа и воды в ходе гликолиза и клеточного дыхания, связанный с синтезом АТФ (энергетический обмен). Если же прочесть его справа налево, то получается описание реакций темновой фазы фотосинтеза, когда из воды и углекислоты при участии АТФ синтезируется глюкоза (пластический обмен).

ХЕМОСИНТЕЗ . К синтезу органических веществ из неорганических, кроме фотоавтотрофов, способны и некоторые бактерии (водородные, нитрифицирующие, серобактерии и др.). Они осуществляют этот синтез за счет энергии, выделяющейся при окислении неорганических веществ. Их называют хемоавтотрофами. Эти хемосинтезирующие бактерии играют важную роль в биосфере. Например, нитрифицирующие бактерии переводят недоступные для усвоения растениями соли аммония в соли азотной кислоты, которые хорошо ими усваиваются.

Клеточный метаболизм составляют реакции энергетического и пластического обмена. В ходе энергетического обмена происходит образование органических соединений с макроэргическими химическими связями - АТФ. Необходимая для этого энергия поступает от окисления органических соединений в ходе анаэробных (гликолиз, брожение) и аэробных (клеточное дыхание) реакций; от солнечных лучей, энергия которых усваивается на световой фазе (фотосинтез); от окисления неорганических соединений (хемосинтез). Энергия АТФ расходуется на синтез необходимых клетке органических соединений в ходе реакций пластического обмена, к которым относятся и реакции темновой фазы фотосинтеза.

  • В чем заключаются различия между пластическим и энергетическим обменом?
  • Как преобразуется энергия солнечных лучей в световую фазу фотосинтеза? Какие процессы проходят в темновую фазу фотосинтеза?
  • Почему фотосинтез называют процессом отражения планетно-космического взаимодействия?
Поделитесь с друзьями или сохраните для себя:

Загрузка...