Методы наблюдения и регистрации элементарных частиц — Гипермаркет знаний. Методы наблюдения и регистрации элементарных частиц Методы наблюдения и регистрации заряженных элементарных частиц




Счетчик состоит из стеклянной трубки, покрытой изнутри металлическим слоем (катод), и тонкой металлической нити, идущей вдоль оси трубки (анод). Трубка заполняется газом, обычно аргоном. Заряженная частица (электрон, а-частица и т.д.), пролетая в газе, отрывает от атомов электроны и создает положительные ионы и свободные электроны. Электрическое поле между анодом и катодом ускоряет электроны до энергий, при которых начинается ударная ионизация. Принцип действия Возникает лавина ионов, и ток через счетчик резко возрастает. При этом на нагрузочном резисторе R образуется импульс напряжения, который подается в регистрирующее устройство.


Особенности Для того чтобы счетчик мог регистрировать следующую попавшую в него частицу, лавинный разряд необходимо погасить. Это происходит автоматически. Счетчик регистрирует почти все попадающие в него электроны; что же касается γ-квантов, то он регистрирует приблизительно только один γ - квант из ста. Регистрация тяжелых частиц (например, α-частиц) затруднена, так как сложно сделать в счетчике достаточно тонкое «окошко», прозрачное для этих частиц.


Камера Вильсона В камере же Вильсона, созданной в 1912 г., быстрая заряженная частица оставляет след, который можно наблюдать непосредственно или сфотографировать. Этот прибор можно назвать «окном» в микромир, т. е. мир элементарных частиц и состоящих из них систем.


Принцип действия Камера Вильсона представляет собой герметически закрытый сосуд, заполненный парами воды или спирта, близкими к насыщению. При резком опускании поршня, вызванном уменьшением давления под поршнем, пар в камере расширяется. Вследствие этого происходит охлаждение, и пар становится пересыщенным. Это неустойчивое состояние пара: пар легко конденсируется. Центрами конденсации становятся ионы, которые образует в рабочем пространстве камеры пролетевшая частица. Если частица проникает в камеру непосредственно перед расширением или сразу после него, то на ее пути возникают капельки воды. Эти капельки образуют видимый след пролетевшей частицы трек. Затем камера возвращается в исходное состояние и ионы удаляются электрическим полем. В зависимости от размеров камеры время восстановления рабочего режима колеблется от нескольких секунд до десятков минут.


Особенности По длине трека можно определить энергию частицы, а по числу капелек на единицу длины трека оценивается ее скорость. Чем длиннее трек частицы, тем больше ее энергия. А чем больше капелек воды образуется на единицу длины трека, тем меньше ее скорость. Частицы с большим зарядом оставляют трек большей толщены Камеру Вильсона можно поместить в однородное магнитное поле. Магнитное поле действует на движущуюся заряженную частицу с определенной силой. Эта сила искривляет траекторию частицы. Трек имеет тем большую кривизну, чем больше заряд частицы и чем меньше ее масса. По кривизне трека можно определить отношение заряда частицы ее массе.


Принцип действия В исходном состоянии жидкость в камере находится под высоким давлением, предохраняющим ее от закипания, несмотря на то что температура жидкости выше температуры кипения при атмосферном давлении. При резком понижении давления жидкость оказывается перегретой и в течение небольшого времени она будет находиться в неустойчивом состоянии. Заряженные частицы, пролетающие именно в это время, вызывают появление треков, состоящих из пузырьков пара. В качестве жидкостей используются главным образом жидкий водород и пропан.


Особенности Длительность рабочего цикла пузырьковой камеры невели­ка около 0,1 с. Преимущество пузырьковой камеры перед камерой Вильсона обусловлено большей плотностью рабочего вещества. Пробеги частиц вследствие этого оказываются достаточно короткими, и частицы даже больших энергий застревают в камере. Это позволяет наблюдать серию последовательных превращений частицы и вызываемые ею реакции.


Метод толстослойных фотоэмульсий Ионизирующее действие быстрых заряженных частиц на эмульсию фотопластинки позволило французскому физику А. Беккерелю открыть в 1896 г. радиоактивность. Метод был развит советскими физиками Л. В. Мысовским, А. П. Ждановым и др.


Принцип действия Фотоэмульсия содержит большое количество микроскопических кристалликов бромида серебра. Быстрая заряженная частица, пронизывая кристаллик, отрывает электроны от отдельных атомов брома. Цепочка таких кристалликов образует скрытое изображение. При проявлении в этих кристалликах восстанавливается металлическое серебро и цепочка зерен серебра образует трек частицы. По длине и толщине трека можно оценить энергию и массу частицы.


Особенности Из-за большой плотности фотоэмульсии треки получаются очень короткими (порядка см для α -частиц, испускаемых радиоактив­ными элементами), но при фотографировании их можно увеличить. Преимущество фотоэмульсий состоит в том, что время экспозиции может быть сколь угодно большим. Это позволяет регистрировать редкие явления. Важно и то, что благо­даря большой тормозящей способности фотоэмульсий увеличивается число наблюдаемых интересных реакций между частицами и ядрами.

Методы регистрации элементарных частиц


1) Газоразрядный счётчик Гейгера

Счётчик Гейгера- один из важнейших приборов для автоматического счёта частиц.

Счётчик состоит из стеклянной трубки, покрытой изнутри металлическим слоем (катод), и тонкой металлической нити, идущей вдоль оси трубки (анод).

Трубка заполняется газом, обычно аргоном. Действие счётчика основано на ударной ионизации. Заряженная частица (электрон,£- частица и т.д.), пролетая в газе, отрывает от атомов электроны и создаёт положительные ионы и свободные электроны. Электрическое поле между анодом и катодом (к ним подводится высокое напряжение) ускоряет электроны до энергии, при которых начинается ударная ионизация. Возникает лавина ионов, и ток через счётчик резко возрастает. При этом на нагрузочном резисторе R образуется импульс напряжения, который подаётся в регистрирующее устройство. Для того чтобы счётчик мог регистрировать следующую попавшую в него частицу, лавинный разряд необходимо погасить. Это происходит автоматически. Так как в момент появления импульса тока падение напряжения на разгрузочном резисторе R велико, то напряжение между анодом и катодом резко уменьшается – настолько,что разряд прекращается.

Счётчик Гейгера применяется в основном для регистрации электронов и Y-квантов(фотонов большой энергии).Однако непосредственно Y- кванты вследствие их малой ионизирующей способности не регистрируются. Для их обнаружения внутреннюю стенку трубки покрывают материалом, из которого Y-кванты выбивают электроны.

Счётчик регистрирует почти все попадающие в него электроны; что же касается Y- квантов,то он регистрирует приблизительно только один Y-квант из ста. Регистрация тяжёлых частиц (например, £-частиц) затруднена, так как сложно сделать в счётчике достаточно тонкое «окошко», прозрачное для этих частиц.

2) Камера Вильсона

Действие камеры Вильсона основано на конденсации перенасыщенного пара на ионах с образованием капелек воды. Эти ионы создаёт вдоль своей траектории движущаяся заряженная частица.

Прибор представляет собой цилиндр с поршнем 1 (рис. 2), накрытый плоской стеклянной крышкой 2. В цилиндре находятся насыщенные пары воды или спирта. В камеру вводится исследуемый радиоактивный препарат 3, который образует ионы в рабочем объеме камеры. При резком опускании поршня вниз, т.е. при адиабатном расширении, происходит охлаждение пара и он становится перенасыщенным. В этом состоянии пар легко конденсируется. Центрами конденсации становятся ионы, образованные пролетевшей в это время частицей. Так в камере появляется туманный след (трек) (рис.3), который можно наблюдать и фотографировать. Трек существует десятые доли секунды. Вернув поршень в исходное положение и удалив ионы электрическим полем, можно вновь выполнить адиабатное расширение. Таким образом, опыты с камерой можно проводить многократно.

Если камеру поместить между полюсами электромагнита, то возможности камеры по изучению свойств частиц значительно расширяются. В этом случае на движущуюся частицу действует сила Лоренца, что позволяет по искривлению траектории определить значение заряда частицы и ее импульс. На рисунке 4 приведен возможный вариант расшифровки фотографии треков электрона и позитрона. Вектор индукции В магнитного поля направлен перпендикулярно плоскости чертежа за чертеж. Влево отклоняется позитрон, вправо - электрон.


3) Пузырьковая камера

Отличается от камеры Вильсона тем, что перенасыщенные пары в рабочем объеме камеры заменяются перегретой жидкостью, т.е. такой жидкостью, которая находится под давлением, меньшим давления ее насыщенных паров.

Пролетая в такой жидкости, частица вызывает возникновение пузырьков пара, образуя тем самым трек (рис.5).

В исходном состоянии поршень сжимает жидкость. При резком понижении давления температура кипения жидкости оказывается меньше температуры окружающей среды.

Жидкость переходит в неустойчивое (перегретое) состояние. Это и обеспечивает появление пузырьков на пути движения частицы. В качестве рабочей смеси применяются водород, ксенон, пропан и некоторые другие вещества.

Преимущество пузырьковой камеры перед камерой Вильсона обусловлено большей плотностью рабочего вещества. Пробеги частиц вследствие этого оказываются достаточно короткими, и частицы даже больших энергий застревают в камере. Это позволяет наблюдать серию последовательных превращений частицы и вызываемые ею реакции.


4) Метод толстослойных фотоэмульсий

Для регистрации частиц наряду с камерами Вильсона и пузырьковыми камерами применяются толстослойные фотоэмульсии. Ионизирующие действие быстрых заряженных частиц на эмульсию фотопластинки. Фотоэмульсия содержит большое количество микроскопических кристалликов бромида серебра.

Быстрая заряженная частица, пронизывая кристаллик, отрывает электроны от отдельных атомов брома. Цепочка таких кристалликов образует скрытое изображение. При появлении в этих кристалликах восстанавливается металлическое серебро и цепочка зёрен серебра образует трек частицы.

По длине и толщине трека можно оценить энергию и массу частицы. Из-за большой плотности фотоэмульсии треки получаются очень короткими, но при фотографировании их можно увеличить. Преимущество фотоэмульсии состоит в том, что время экспозиции может быть сколько угодно большим. Это позволяет регистрировать редкие явления. Важно и то, что благодаря большой тормозящей способности фотоэмульсии увеличивается число наблюдаемых интересных реакций между частицами и ядрами.


Сих пор явлениях каждая такая частица ведет себя как единое целое. Элементарные частицы могут превращаться друг в друга. В настоящее время известны четыре вида взаимодействий между элементарными частицами: сильное, электромагнитное, слабое и гравитационное (в порядке убывания интенсивности). Сильное взаимодействие. Этот вид взаимодействия называют иначе ядерным, так как оно обеспечивает связь...


... (дозиметров). Исследования биологического действия ионизирующих излучений на клеточном и молекулярном уровнях вызвали развитие микродозиметрии, исследующей передачу энергии излучения микроструктурам вещества. Методы дозиметрии У человека в процессе эволюции не выработалось органов чувств, способных к специфическому восприятию ионизирующих излучений, которые невидимы, не имеют цвета, запаха, ...

В лабораторных экспериментах и астрономических наблюдениях. Эти составные элементы космомикрофизики имеют свою специфику, к обсуждению которой мы и переходим. 4. Космические лучи Развитие физики элементарных частиц тесно связало с изучением космического излучения - излучения, приходящего на Землю практически изотропно со всех направлений космического пространства. Измерения интенсивности...

Телепередача из печени и др. Любопытные эффекты и остроумные решения: радиоактивность человека, радиоактивный сыр, восстановление пропавших изображений на фотографиях, автографы невидимок. Методы поиска и исследований в преподавании физики Введение От мифов к простым фактам. Потребность в познании мира в начале привела к попыткам объяснить мир сразу в целом, немедленно получить ответы на...

Источники элементарных частиц

Для изучения элементарных частиц требуются их источники. До создания ускорителей в качестве таких источников использовались природные радиоактивные элементы и космические лучи. В космических лучах присутствуют элементарные частицы самых разных энергий вплоть до таких, которые нельзя получить сегодня искусственным путем. Недостаток космических лучей как источника частиц с высокими энергиями в том, что таких частиц очень немного. Появление частицы с высокой энергией в поле зрения прибора носит случайный характер.

Ускорители элементарных частиц дают потоки элементарных частиц, обладающих одинаково высокой энергией. Ускорители существуют различных типов: бетатрон, циклотрон, линейный ускоритель.

Расположенная недалеко от Женевы Европейская организация по ядерным исследованиям (ЦЕРН *) является обладателем самого большого на сегодняшний день ускорителя элементарных частиц, построенного в кольцевом туннеле под землей на глубине 100 м. Общая длина туннеля составляет 27 км. (кольцо примерно 8.6 км в диаметре). Супер коллайдер должен был быть запущен в соответствии с программой в 2007 г. Около 4000 т металла будет охлаждено до температуры всего на 2° выше абсолютного нуля. В результате ток в 1,8 миллиона ампер будет проходить по сверхпроводящим кабелям почти без потерь.

Ускорители элементарных частиц являются настолько грандиозными сооружениями, что их называют пирамидами XX века.

* Аббревиатура CERN произошла от фр. Conseil Européen pour la Recherche Nucléaire (Европейский Совет по Ядерным Исследованиям). В русском языке обычно используется аббревиатура ЦЕРН.

Методы регистрации элементарных частиц

1. Сцинтилляционные счетчики

Первоначально для регистрации элементарных частиц использовались люминесцентные экраны – экраны, покрытые специальным веществом, люминофором, способным преобразовывать поглощаемую ими энергию в световое излучение (люминесцировать). Элементарная частица при попадании в такой экран дает слабую вспышку, настолько слабую, что наблюдать ее можно только в полной темноте. Необходимо было иметь изрядные терпение и внимание, чтобы, сидя в полной темноте, часами подсчитывать количество замеченных вспышек.

В современном сцинтилляционном счетчике подсчет вспышек производится автоматически. Счетчик состоит из сцинтиллятора, фотоумножителя и электронных устройств для усиления и подсчета импульсов.

Сцинтиллятор преобразует энергию частицы в кванты видимого света.

Кванты света попадают в фотоумножитель, который преобразует их в импульсы тока.

Импульсы усиливаются электрической схемой и автоматически сосчитываются.

2. Химические методы

Химические методы основаны на том, что ядерные излучения являются катализаторами некоторых химических реакций, то есть ускоряют или создают возможность их протекания.

3. Калориметрические методы

В калориметрических методах регистрируют количество теплоты, которая выделяется при поглощении излучения веществом. Один грамм радия, например, выделяет в час примерно 585 дж. тепла.

4. Методы, основанные на применении эффекта Черенкова

Ничто в природе не может двигаться быстрее света. Но когда мы так говорим, мы имеем в виду движение света в вакууме. В веществе свет распространяется со скоростью , где с – скорость света в вакууме, а n – показатель преломления вещества. Следовательно, в веществе свет движется медленнее, чем в вакууме. Элементарная частица, двигаясь в веществе, может превысить скорость света в этом веществе, не превосходя при этом скорость света в вакууме. В этом случае возникает излучение, которое открыл в свое время Черенков. Излучение Черенкова регистрируется фотоумножителями так же, как и в сцинтилляционном методе. Метод позволяет регистрировать только быстрые, то есть обладающие высокими энергиями, элементарные частицы.

Следующие методы не только позволяют зарегистрировать элементарную частицу, но и увидеть ее след.

5. Камера Вильсона

Изобретена Чарльзом Вильсоном в 1912 г., а в 1927 г. он получил за нее Нобелевскую премию. Камера Вильсона – это очень сложное инженерное сооружение. Мы приводим только упрощенную схему.

Рабочий объем камеры Вильсона заполнен газом и содержит в себе пар воды или спирта. При быстром перемещении поршня вниз газ резко охлаждается и пар становится перенасыщенным. Когда в этом пространстве пролетает частица, создающая на своем пути ионы, то на этих ионах образуются капелькисконденсировавшегося пара. В камере возникает след траектории частицы (трек) в виде узкой полоски капелек тумана. При сильном боковом освещении трек можно видеть и сфотографировать.

6. Пузырьковая камера (изобретена Глезером в 1952 г.)

Пузырьковая камера действует аналогично камере Вильсона. Только в качестве рабочего тела используется не переохлажденный пар, а перегретая жидкость (пропан, жидкий водород, азот, эфир, ксенон, фреон...). Перегретая жидкость, так же как и переохлажденный пар, находится в неустойчивом состоянии. Пролетающая через такую жидкость частица образует ионы, на которых сразу же образуются пузырьки. Жидкостная пузырьковая камера эффективнее газовой камеры Вильсона. Физикам ведь важно не только наблюдать трек пролетевшей частицы. Важно, чтобы в пределах области наблюдения частица столкнулась с другой частицей. Картина взаимодействия частиц гораздо более информативна. Пролетая через более плотную жидкость, в которой высокая концентрация протонов и электронов, частица имеет гораздо больше шансов испытать столкновение.

7. Эмульсионная камера

Впервые использовалась советскими физиками Мысовским и Ждановым. Фотографическая эмульсия изготавливается на основе желатины. Продвигаясь в плотной желатине, элементарная частица подвергается частым столкновениям. За счет этого путь частицы в эмульсии часто очень короткий и его после проявления фотоэмульсии изучают под микроскопом.

8. Искровая камера (изобретатель Краншау)

В камере А расположена система сетчатых электродов. На эти электроды подается высокое напряжение с блока питания Б . Когда через камеру пролетает элементарная частица В , она создает ионизированный след. По этому следу проскакивает искра, которая и делает видимым трек частицы.

9. Стриммерная камера

Стриммерная камера аналогична искровой, только расстояние между электродами больше (до полуметра). Напряжение на электроды подается на очень короткое время с таким расчетом, чтобы настоящая искра не успела бы развиться. Возникнуть успевают только зачатки искры – стриммеры.

10. Счетчик Гейгера

Счётчик Гейгера представляет собой, как правило, цилиндрический катод, вдоль оси, которого натянута проволока – анод. Система заполнена газовой смесью.

При прохождении через счётчик заряженная частица ионизирует газ. Образующиеся электроны, двигаясь к положительному электроду - нити, попадая в область сильного электрического поля, ускоряются и в свою очередь ионизуют молекулы газа, что приводит к коронному разряду. Амплитуда сигнала достигает нескольких вольт и легко регистрируется.

Счётчик Гейгера регистрирует факт прохождения частицы через счётчик, но не позволяет измерить энергию частицы.

В данной статье мы поможем подготовиться к уроку по физике (9 класс). исследования частиц - это не обычная тема, а очень интересная и захватывающая экскурсия в мир молекулярной ядерной науки. Достичь такого уровня прогресса цивилизация смогла совсем недавно, и ученые до сих пор спорят, а нужны ли человечеству такие знания? Ведь если люди смогут повторить процесс атомного взрыва, который привел к появлению Вселенной, то может, разрушится не только наша планета, но и весь Космос.

О каких частицах идет речь и зачем их исследовать

Частично ответы на эти вопросы дает курс физики. Экспериментальные методы исследования частиц - это способ увидеть то, что недоступно человеку даже при использовании самых мощных микроскопов. Но обо всем по-порядку.

Элементарная частица - это совокупный термин, под которым подразумеваются такие частицы, которые уже нельзя расщепить на меньшие кусочки. Всего физиками открыто более 350 элементарных частиц. Мы больше всего привыкли слышать о протонах, нейронах, электронах, фотонах, кварках. Это так называемые фундаментальные частицы.

Характеристика элементарных частиц

Все наименьшие частицы имеют одно и тоже свойство: они могут взаимопревращаться под влиянием собственного воздействия. Одни имеют сильные электромагнитные свойства, другие слабые гравитационные. Но все элементарные частицы характеризуются по следующим параметрам:

  • Масса.
  • Спин - собственный момент импульса.
  • Электрический заряд.
  • Время жизни.
  • Четность.
  • Магнитный момент.
  • Барионный заряд.
  • Лептонный заряд.

Краткий экскурс в теорию строения вещества

Любое вещество состоит из атомов, которые в свою очередь имеют ядро и электроны. Электроны, подобно планетам в Солнечной системе, двигаются вокруг ядра каждый по своей оси. Расстояние между ними очень большое, в атомных масштабах. Ядро состоит из протонов и нейронов, связь между ними настолько крепкая, что их невозможно разъединить ни одним известным науке способом. В этом и состоит суть экспериментальных методов исследования частиц (кратко).

Нам тяжело это представить, но ядерная связь превосходит все известные на земле силы в миллионы раз. Мы знаем химический, ядерный взрыв. Но то, что сдерживает протоны и нейроны в совокупности - это нечто иное. Возможно, это ключ к разгадке тайны возникновения мироздания. Именно поэтому так важно изучать экспериментальные методы изучения частиц.

Многочисленные опыты натолкнули ученых на мысль, что нейроны состоят из еще меньших единиц и назвали их кварками. Что находится внутри них, пока не известно. Но кварки - это неразделяемые единицы. То есть, выделить одну не получается никаким способом. Если ученые используют экспериментальный метод исследования частиц с целью выделить один кварк, то сколько бы попыток они не предпринимали, всегда выделяется минимум два кварка. Это еще раз подтверждает нерушимую силу ядерного потенциала.

Какие существуют методы исследования частиц

Перейдем непосредственно к экспериментальным методам исследования частиц (таблица 1).

Название метода

Принцип действия

Свечение (люминесценция)

Радиоактивный препарат испускает волны, благодаря которым происходит столкновение частиц и могут наблюдаться отдельные свечения.

Ионизация молекул газа быстрыми заряженными частицами

Опускает с большой скоростью поршень, что приводит к сильному охлаждению пара, который становится перенасыщенным. Капельки конденсата указывают на траектории движения цепочки ионов.

Пузырьковая камера

Ионизация жидкости

Объем рабочего пространства наполнен горячим жидким водородом или пропаном, на которые воздействуют под давлением. Доводят состояние до перегретого и резко уменьшают давление. Заряженные частицы, воздействуя еще большей энергией, заставляют водород или пропан закипеть. На той траектории, по которой двигалась частица образовываются капельки пара.

Метод сцинтилляций (Спинтарископ)

Свечение (люминесценция)

Когда молекулы газа ионизируются, возникает большое количество электронно-ионных пар. Чем больше напряженность, тем больше возникает свободных пар, пока не достигнет пика и не останется ни одного свободного иона. В этот момент счетчик регистрирует частицу.

Это один из первых экспериментальных методов исследования заряженных частиц, и был изобретен на пять лет позже счетчика Гейгера - в 1912 году.

Строение простое: стеклянный цилиндр, внутри - поршень. Внизу постелена черная ткань, пропитанная водой и спиртом, благодаря чему воздух в камере насыщен их парами.

Поршень начинают опускать и поднимать, создавая давление, в результате чего газ остывает. Должен образоваться конденсат, но его нет, поскольку в камере отсутствует центр конденсации (ион или пылинка). После этого колбу приподнимают для попадания частички - иона или пыли. Частица начинает движение и по ее траектории образовывается конденсат, который можно увидеть. Путь, который проходит частица, называется трек.

Недостатком такого метода является слишком маленький пробег частиц. Это привело к появлению более прогрессивной теории, основанной на устройстве с более плотной средой.

Пузырьковая камера

Аналогичный принцип действия камеры Вильсона имеет следующий экспериментальный метод исследования частиц - Только вместо насыщенного газа, в стеклянной колбе находится жидкость.

Основа теории такова, что под высоким давлением жидкость не может начать кипеть выше точки закипания. Но как только появляется заряженная частица, по треку ее движения жидкость начинает закипать, переходя в парообразное состояние. Капельки этого процесса фиксируются камерой.

Метод толстослойных фотоэмульсий

Вернемся к таблице по физике "Экспериментальные методы исследования частиц". В ней, на ряду с камерой Вильсона и пузырьковым методом, рассматривался способ регистрации частиц с помощью толстослойной фотоэмульсии. Впервые эксперимент был поставлен советскими физиками Л.В. Мысовским и А.П. Ждановым в 1928 году.

Идея очень проста. Для опытов используют пластину, покрытую толстым слоем фотоэмульсий. Эта фотоэмульсия состоит из кристалликов бромида серебра. Когда заряженная частица пронизывает кристаллик, она отделяет от атома электроны, которые образуют скрытую цепочку. Ее можно увидеть, проявив пленку. Полученное изображение позволяет рассчитать энергию и массу частицы.

На самом деле, трек получается очень коротким и микроскопически маленьким. Но метод хорош тем, что проявленный снимок можно увеличивать бесконечное число раз, тем самым лучше изучая его.

Метод сцинтилляций

Впервые его провел Резерфорд в 1911 году, хотя идея возникла немного раньше и у другого ученого - У. Крупе. Несмотря на то, что разница составляла 8 лет, за это время пришлось усовершенствовать прибор.

Основной принцип состоит в том, что на экране, покрытом люминесцирующим веществом, будут отображаться вспышки света при прохождении заряженной частицы. Атомы вещества возбуждаются при воздействии на них частицы с мощной энергией. В момент столкновения происходит вспышка, которую наблюдают в микроскоп.

Этот метод очень непопулярен среди физиков. У него есть несколько недостатков. Первое, точность полученных результатов очень сильно зависит от остроты зрения человека. Если моргнуть - можно пропустить очень важный момент.

Второе - при длительном наблюдении очень быстро устают глаза, и поэтому, изучение атомов становится невозможным.

Выводы

Существует несколько экспериментальных методов исследования заряженных частиц. Поскольку атомы веществ настолько маленькие, что их тяжело увидеть даже в самый мощный микроскоп, ученым приходится ставить различные опыты, чтобы понять, что находится в середине центра. На данном этапе развития цивилизации проделан огромный путь и изучены самые недоступные взору элементы. Возможно, именно в них кроются тайны Вселенной.

Методы регистрации элементарных частиц основаны на использовании систем в долгоживущем неустойчивом состоянии, в которых под действием пролетающей заряженной частицы происходит переход в устойчивое состояние.

Счетчик Гейгера.

Счетчик Гейгера — детектор частиц, действие которого основано на возникновении самостоятельного электрического разряда в газе при попадании частицы в его объем. Изобретен в 1908 г. X. Гейгером и Э. Резерфордом, позднее был усовершенствован Гейгером и Мюллером.

Счетчик Гейгера состоит из металлического цилиндра — катода — и тонкой проволочки, натянутой вдоль его оси — анода, заключенных в герметический объем, заполненный газом (обычно аргоном) под давлением порядка 100-260 ГПа (100-260 мм рт. ст.). Между катодом и анодом прикладывается напряжение порядка 200-1000 В. Заряженная частица, попав в объем счетчика, образует неко-торое количество электронно-ионных пар, которые движутся к соответствующим электродам и при большом напряжении на длине свободного пробега (на пути до следующего стол-кновения) набирают энергию, превосходящую энергию ио-низации, и ионизируют молекулы газа. Образуется лавина, ток в цепи возрастает. С нагрузочного сопротивления им-пульс напряжения подается на регистрирующее устройство. Резкое увеличение падения напряжения на нагрузочном со-противлении приводит к резкому уменьшению напряжения между анодом и катодом, разряд прекращается, и трубка готова к регистрации следующей частицы.

Счетчиком Гейгера регистрируют в основном электроны и γ-кванты (последние, правда, с помощью дополнительного материала, наносимого на стенки сосуда, из которых γ-кванты выбивают электроны).

Камера Вильсона.

Камера Вильсона — трековый (от англ. track — след, траектория) детектор частиц. Создана Ч. Вильсоном в 1912 г. С помощью камеры Вильсона был сделан ряд открытий в ядер-ной физике и физике элементарных частиц, таких, как открытие широких атмосферных ливней (в области космических лучей) в 1929 г., позитрона в 1932 г., обнаружение следов мюонов, откры-тие странных частиц. В дальнейшем камера Вильсона была практически вытеснена пузырьковой камерой как более быстродействующей. Камера Вильсона представляет со-бой сосуд, заполненный парами воды или спирта, близкими к насыщению (см. рис.). Действие ее основано на конденсации перенасыщенного пара (воды или спирта) на ионах, образованных пролетевшей частицей. Перенасыщенный пар создастся резким опусканием поршня (см. рис.) (пар в камере при этом адиабатически расширяется, вследствие чего тем-пература его резко надает).

Капельки жидкости, осевшие на ионах, делают видимым след проле-тевшей частицы — трек, что дает возможность его сфотографировать. По длине трека можно определить энергию частицы, а по числу капелек на единицу длины трека — оценить ее скорость. Помещение камеры в магнитное поле позволяет определить по кривизне трека отношение заряда частицы к ее массе (впервые предложено советскими физиками П. Л. Ка-пицей и Д. В. Скобельцыным).

Пузырьковая камера.

Пузырьковая камера — прибор для регистрации следов (треков) заряженных частиц, действие которого основано на вскипании перегретой жидкости вдоль траектории частицы.

Первая пузырьковая камера (1954 г.) представляла собой металлическую камеру со стеклянными окнами для освещения и фотографирования, заполненную жидким водородом. В дальнейшем она создавалась и совершенствовалась во всех лабораториях мира, оснащенных ускорителями заряженных частиц. От колбочки объемом 3 см 3 размер пузырьковой камеры достиг нескольких кубических метров. Большинство пузырьковых камер имеют объем 1 м 3 . За изобретение пузырь-ковой камеры Глейзеру в 1960 г. была присуждена Нобелевская премия.

Длительность рабочего цикла пузырьковой камеры составляет 0,1 . Преимущество ее перед камерой Вильсона — в большей плотности рабочего вещества, позволяющей регистрировать частицы больших энергий.

Поделитесь с друзьями или сохраните для себя:

Загрузка...