Нормальный гемостаз. Тромбоциты Снизить количество кровяных пластинок

© Использование материалов сайта только по согласованию с администрацией.

Тромбоциты (PLT) – кровяные пластинки (бляшки Биццоцеро), осколки мегакариоцитов, играют важную роль в организме человека. Немного активированные даже в норме, они всегда устремляются в зону повреждения сосуда, чтобы совместно с эндотелием остановить кровотечение путем образования . Тромбоциты осуществляют микроциркуляторный (первичный, сосудисто-тромбоцитарный) гемостаз, который происходит в мелких сосудах. Реакция свертывания крови в крупных сосудах реализуется механизмом вторичного гемостаза, который еще называют макроциркуляторным или гемокоагуляционным.

образование тромбоцитов

Где золотая середина?

Так же, как и другие форменные элементы, тромбоциты могут иметь склонность и к снижению, и к повышению, что часто является патологией, поскольку норма этих клеток в крови составляет 200-400*10 9 /л и зависит от физиологического состояния организма. Их количество колеблется в зависимости от времени суток и поры года. Известно, что ночью и весной количество тромбоцитов падает. Ниже уровень тромбоцитов у женщин (180-320 х 10 9 /л), а во время месячных их количество может снизиться до 50%. Однако в данном случае тромбоциты понижены физиологически, как защитная реакция (предупреждение тромбозов у женщин), поэтому лечения такое состояние не требует.

Количество тромбоцитов в крови несколько ниже при беременности, но если их уровень падает ниже 140 х 10 9 /л, то меры должны приниматься незамедлительно , поскольку возрастает риск кровотечений во время родов.

Специальные мероприятия осуществляются и тогда, когда причиной низкого уровня тромбоцитов становятся заболевания:

  • Нарушение кроветворения в костном мозге;
  • Болезни печени;

Физиологическим может быть и повышение кровяных пластинок, например, после пребывания в высокогорной местности или при тяжелой физической работе. А вот когда в крови тромбоциты повышены в силу патологических состояний, тогда возрастает риск и , ведь тромбоциты отвечают за свертываемость крови, а их избыточное количество приведет к усиленному тромбообразованию.

У детей после года уровень красных кровяных телец не отличается от таковых у взрослых. До года количество тромбоцитов в крови несколько ниже и составляет 150-350 х 10 9 /л. Норма у новорожденных начинается с уровня 100 х 10 9 /л.

Однако следует помнить, что когда тромбоциты в крови у ребенка повышены, то это будет настораживающим фактором и в таких случаях можно предположить следующую патологию:

Одним словом, это будет поводом в обязательном порядке обратиться к врачу, но прежде придется сдать анализ крови повторно для исключения ошибки.

Тромбоциты в общем анализе крови

Современная клиническая лабораторная диагностика хотя и использует старые проверенные способы окраски и подсчета тромбоцитов на стекле, однако прибегает и к изучению популяции тромбоцитов с помощью гематологического анализатора, возможности которого значительно шире.

Гематологический анализатор позволяет определить , которые он не только измеряет, но и представляет в виде гистограммы, причем старые элементы находятся в ее левой стороне, а молодые – в правой. Размер клеток позволяет судить о функциональной активности тромбоцитов, и чем они старше, тем меньше у них размер и активность.

а - тромбоциты в норме б - различные по объему тромбоциты (выраженный анизоцитоз) в - огромные макротромбоциты

Увеличение MPV наблюдается при , анемиях после кровотечений, макроцитарной тромбодистрофии Бернара-Сулье и других патологических состояниях. Снижение этого показателя происходит в случаях:

  • Беременности;
  • Железодефицитной анемии;
  • Воспалений;
  • Опухолей;
  • Инфаркта миокарда;
  • Коллагенозов;
  • Заболеваний щитовидной железы;
  • Болезней почек и печени;
  • Нарушений в свертывающей системе крови;
  • Заболеваний крови.

Другим показателем качества кровяных пластинок является относительная , которая указывает степень изменения тромбоцитов по размеру (анизоцитоз) , иными словами, это – показатель гетерогенности клеток.

Его отклонения указывают на такую патологию, как:

  1. Анемия;
  2. Воспалительный процесс;
  3. Глистная инвазия;
  4. Злокачественные новообразования.

Способность тромбоцитов приклеиваться к чужеродной для них поверхности (коллаген, насыщенные жирные кислоты, которые составляют основу атеросклеротической бляшки), называется адгезией, а способность приклеиваться друг к другу и образовывать конгламераты – агрегацией. Два эти понятия неразрывно связаны между собой.

Агрегация тромбоцитов – неотъемлемая часть такого важного процесса, как тромбообразование, которое является главной защитой от кровотечений при повреждении сосудистой стенки. Однако склонность к повышенному образованию тромбов ( или другая патология) может привести к неконтролируемой агрегации тромбоцитов и сопровождаться патологическим тромбообразованием.

Кровь сворачивается при контакте с любой чужеродной поверхностью , ведь только эндотелий сосудов является для нее родной средой, где она остается в жидком состоянии. Но стоит только повредить сосуд, как среда тут же оказываются чужой и на место аварии начинают устремляться тромбоциты, где самоактивируются, чтобы образовать тромб и «залатать» прореху. Это механизм первичного гемостаза и осуществляется он в случае ранения небольшого сосуда (до 200 мкл). В результате – образуется первичный белый тромб.

При повреждении крупного сосуда самопроизвольно активируется фактор контакта (XII), который, начинает взаимодействовать с фактором XI и, являясь ферментом, активирует его. Вслед за этим идет каскад реакций и ферментных превращений, где факторы свертывания начинают активировать друг друга, то есть, происходит некая цепная реакция, в результате которой факторы сосредотачиваются в месте повреждения. Туда же совместно с другими кофакторами (V и кининоген с высокой молекулярной массой) прибывает и фактор свертывания крови VIII (антигемофильный глобулин), который сам ферментом не является, однако, как вспомогательный белок, он принимает активное участие в процессе свертывания.

Взаимодействие между IX и Х факторами происходит на поверхности активированных тромбоцитов, которые уже контактировали с поврежденным сосудом и на их мембране появились специальные рецепторы. Х активный фактор превращает в тромбин, а в это время фактор II также прикрепляется к поверхности тромбоцитов. Здесь же присутствует и вспомогательный белок – фактор VIII.

Процесс свертывания крови может начинаться с повреждения поверхности эндотелия (сосудистой стенки), тогда происходит срабатывание внутреннего механизма образования протромбиназы. Свертывание также может запускаться от контакта крови с тканевым тромбопластином, который спрятан в клетке ткани, если мембрана целая. Но он выходит наружу при повреждении сосуда (внешний механизм образования протромбиназы). Запуск того или иного механизма объясняет факт, что время свертывания пробы капиллярной крови (внешний путь) в 2-3 раза меньше, чем пробы венозной крови (внутренний путь).

Для определения времени, необходимого для свертывания крови, применяют лабораторные тесты, основанные на этих механизмах. Исследование свертываемости по Ли-Уайту осуществляют путем забора крови в две пробирки из вены, тогда как образование протромбиназы по внешнему пути изучается по Сухареву (кровь из пальца) . Этот анализ крови на свертываемость довольно прост в исполнении. Кроме того, он не требует особой подготовки (берется натощак) и много времени для производства, ведь капиллярная кровь (как сказано выше) сворачивается в 2-3 раза быстрее венозной. Норма времени свертывания крови по Сухареву составляет от 2 до 5 минут. Если время образования сгустка укорачивается, значит, имеет место ускоренное образование протромбиназы в организме. Это происходит в следующих случаях:

  • После массивной , на которую система свертывания отвечает ;
  • ДВС- синдрома в 1 стадии;
  • Негативного влияния оральных контрацептивов.

Замедленное образование протромбиназы будет выражаться удлинением времени образования сгустка и наблюдаться при определенных состояниях:

  1. Глубоком дефиците I, VIII, IX, XII факторов;
  2. Наследственных коагулопатиях;
  3. Поражении печени;
  4. Лечении антикоагулянтами (гепарином).

Как поднимать уровень тромбоцитов?

Когда в крови тромбоцитов мало, некоторые люди пытаются самостоятельно поднять их с помощью нетрадиционной медицины, употребляя продукты, повышающие тромбоциты в крови и целебные травы.

Следует заметить, что диету для повышения кровяных пластинок можно считать поистине царской:

  • Гречневая каша;
  • Красное мясо, приготовленное в любом варианте;
  • Все сорта рыбы;
  • Яйца и сыр;
  • Печень (желательно говяжья);
  • Наваристые мясные бульоны, колбасы и паштеты;
  • Салаты из крапивы, капусты, свеклы, моркови, болгарского перца, заправленные кунжутным маслом;
  • Всевозможная зелень (укроп, сельдерей, петрушка, шпинат);
  • Ягоды рябины, бананы, гранат, сок шиповника, яблоки зеленых сортов, орехи.

Люди говорят, что повысить тромбоциты народными средствами можно, если употреблять натощак 1 столовую ложку кунжутного масла (три раза в день) или пить свежий сок крапивы (50 мл) с таким же количеством молока. Но все это, наверное, возможно, если тромбоциты снижены незначительно и выяснена причина падения их уровня. Или как вспомогательные мероприятия при основном лечении, которое проводится в стационарных условиях и заключается в переливании донорской тромбомассы, специально приготовленной для конкретного больного.

Лечение сопряжено с определенными трудностями, поскольку тромбоциты долго не живут, поэтому хранится тромбоконцентрат не более 3-х дней в специальных «вертушках» (клетки должны постоянно перемешиваться при хранении). Кроме того, для качественного повышения тромбоцитов, они должны прижиться в организме нового хозяина, поэтому перед их переливанием производится индивидуальный подбор по лейкоцитарной системе HLA (анализ дорогой и трудоемкий).

Снизить количество кровяных пластинок

Снизить тромбоциты легче, чем их поднять. Препараты, содержащие ацетилсалициловую кислоту (аспирин) способствуют разжижению крови и таким образом снижают уровень кровяных пластинок. Также в подобных целях применяются и , которые назначает лечащий врач, а не соседка по лестничной площадке.

Сам больной может лишь помочь врачу, отказавшись от вредных привычек (курение, алкоголь), употребляя продукты богатые йодом (дары моря) и содержащие аскорбиновую, лимонную, яблочную кислоты . Это – виноград, яблоки, клюква, брусника, черника, цитрусовые.

Народные рецепты для снижения уровня тромбоцитов рекомендуют чесночную настойку, порошок корня имбиря, который заваривают в виде чая (1 ст. ложка порошка на стакан кипятка), и какао без сахара утром натощак.

Все это, конечно, хорошо, однако следует помнить, что все мероприятия должны осуществляться под контролем врача, так как такие элементы крови, как тромбоциты, не очень-то подчиняются методам народной медицины.

Видео: о чем говорят анализы крови?

Кровяные пластинки

Кровяные пластинки, или тромбоциты , в свежей крови человека имеют вид мелких бесцветных телец округлой или веретеновидной формы. Они могут объединяться (агглютинировать) в маленькие или большие группы. Количество их колеблется от 200 до 400 x 10 9 в 1 литре крови. Кровяные пластинки представляют собой безъядерные фрагменты цитоплазмы, отделившиеся от мегакариоцитов - гигантских клеток костного мозга.

Тромбоциты в кровотоке имеют форму двояковыпуклого диска. В них выявляются более светлая периферическая часть - гиаломер и более темная, зернистая часть - грануломер . В популяции тромбоцитов находятся как более молодые, так и более дифференцированные и стареющие формы. Гиаломер в молодых пластинках окрашивается в голубой цвет (базофилен), а в зрелых - в розовый (оксифилен). Молодые формы тромбоцитов крупнее старых.

Плазмолемма тромбоцитов имеет толстый слой гликокаликса, образует инвагинации с отходящими канальцами, также покрытыми гликокаликсом. В плазмолемме содержатся гликопротеины, которые выполняют функцию поверхностных рецепторов, участвующих в процессах адгезии и агрегации кровяных пластинок (т.е. процессах свертывания, или коагуляции, крови).

Цитоскелет в тромбоцитах хорошо развит и представлен актиновыми микрофиламентами и пучками микротрубочек, расположенными циркулярно в гиаломере и примыкающими к внутренней части плазмолеммы. Элементы цитоскелета обеспечивают поддержание формы кровяных пластинок, участвуют в образовании их отростков. Актиновые филаменты участвуют в сокращении объема (ретракции) образующихся кровяных тромбов.

В кровяных пластинках имеется две системы канальцев и трубочек. Первая - это открытая система каналов, связанная, как уже отмечалось, с инвагинациями плазмолеммы. Через эту систему выделяется в плазму содержимое гранул кровяных пластинок и происходит поглощение веществ. Вторая - это так называемая плотная тубулярная система, которая представлена группами трубочек, имеющих сходство с гладкой эндоплазматической сетью. Плотная тубулярная система является местом синтеза циклоксигеназы и простагландинов. Кроме того, эти трубочки селективно связывают двухвалентные катионы и являются резервуаром ионов Са2+. Вышеназванные вещества являются необходимыми компонентами процесса свертывания крови.

Выход ионов Са 2+ из трубочек в цитозоль необходим для обеспечения функционирования кровяных пластинок. Фермент циклооксигеназа метаболизирует арахидоновую кислоту с образованием из нее простагландинов и тромбоксана A2, которые секретируются из пластинок и стимулируют их агрегацию в процессе коагуляции крови.



При блокаде циклооксигеназы (например, ацетилсалициловой кислотой) агрегация тромбоцитов тормозится, что используют для профилактики образования тромбов.

В грануломере выявлены органеллы, включения и специальные гранулы. Органеллы представлены рибосомами, элементами эндоплазматической сети аппарата Гольджи, митохондриями, лизосомами, пероксисомами. Имеются включения гликогена и ферритина в виде мелких гранул.

Специальные гранулы составляют основную часть грануломера и представлены тремя типами.

Первый тип - крупные альфа-гранулы. Они содержат различные белки и гликопротеины, принимающие участие в процессах свертывания крови, факторы роста, литические ферменты.

Второй тип гранул - дельта-гранулы, содержащие серотонин, накапливаемый из плазмы, и другие биогенные амины (гистамин, адреналин), ионы Са2+, АДФ, АТФ в высоких концентрациях.

Третий тип мелких гранул, представленный лизосомами, содержащими лизосомные ферменты, а также микропероксисомами, содержащими фермент пероксидазу.



Содержимое гранул при активации пластинок выделяется по открытой системе каналов, связанных с плазмолеммой.

Основная функция кровяных пластинок - участие в процессе свертывания , или коагуляции, крови - защитной реакции организма на повреждение и предотвращение потери крови. В тромбоцитах содержится около 12 факторов, участвующих в свертывании крови. При повреждении стенки сосуда пластинки быстро агрегируют, прилипают к образующимся нитям фибрина, в результате чего формируется тромб, закрывающий дефект. В процессе тромбообразования наблюдается несколько этапов с участием многих компонентов крови.

На первом этапе происходят скопление тромбоцитов и выход физиологически активных веществ. На втором этапе - собственно коагуляция и остановка кровотечения (гемостаз). Вначале происходит образование активного тромбопластина из тромбоцитов (т.н. внутренний фактор) и из тканей сосуда (т.н. внешний фактор). Затем, под влиянием тромбопластина из неактивного протромбина образуется активнй тромбин. Далее, под влиянием тромбина из фибриногена образуется фибрин . Для всех этих фаз коагуляции крови необходим Са2+.

Наконец, на последнем третьем этапе наблюдается ретракция кровяного сгустка, связанная с сокращением нитей актина в отростках тромбоцитов и нитей фибрина.

Таким образом, морфологически на первом этапе происходит адгезия тромбоцитов на базальной мембране и на коллагеновых волокнах поврежденной сосудистой стенки, в результате которой образуются отростки тромбоцитов и на их поверхность из пластинок через систему трубочек выходят гранулы, содержащие тромбопластин. Он активирует реакцию превращения протромбина в тромбин, а последний влияет на образование из фибриногена фибрина.

Важной функцией тромбоцитов является их участие в метаболизме серотонина . Тромбоциты - это практически единственные элементы крови, в которых из плазмы накапливаются резервы серотонина. Связывание тромбоцитами серотонина происходит с помощью высокомолекулярных факторов плазмы крови и двухвалентных катионов с участием АТФ.

В процессе свертывания крови из разрушающихся тромбоцитов высвобождается серотонин, который действует на сосудистую проницаемость и сокращение глад-комышечных клеток сосудов.

Продолжительность жизни тромбоцитов - в среднем 9-10 дней. Стареющие тромбоциты фагоцитируются макрофагами селезенки. Усиление разрушающей функции селезенки может быть причиной значительного снижения числа тромбоцитов в крови (тромбоцитопения). Для устранения этого может потребоваться удаление селезенки (спленэктомия).

При снижении числа кровяных пластинок, например при кровопотере, в крови накапливается тромбопоэтин - фактор, стимулирующий образование пластинок из мегакариоцитов костного мозга.

· гемофилия -- наследственная болезнь, обусловленная недостаточностью факторов VIII или IX свертывания крови; проявляется симптомами повышенной кровоточивости; наследуется по рецессивному сцепленному с полом типу;

· пурпура -- множественные мелкие кровоизлияния в коже и слизистых оболочках;

· тромбоцитопеническая пурпура -- общее название группы болезней, характеризующихся тромбоцитопенией и проявляющихся геморрагическим синдромом (напр., болезнь Верльгофа);

Часть четвертая – Формула крови, лейкоцитарная формула, возрастные изменения крови, характеристика лимфы.

Гемограмма и лейкограмма

В медицинской практике анализ крови играет огромную роль. При клинических анализах исследуют химический состав крови (в т.ч. электролитный состав), определяют количество форменных элементов, гемоглобина, резистентность эритроцитов, скорость оседания эритроцитов и многие другие показатели. У здорового человека форменные элементы крови находятся в определенных количественных соотношениях, которые принято называть гемограммой, или формулой крови.

Важное значение для характеристики состояния организма имеет так называемый дифференциальный подсчет лейкоцитов. Определенные процентные соотношения лейкоцитов называют лейкограммой, или лейкоцитарной формулой.

Возрастные изменения крови

Число эритроцитов в момент рождения и в первые часы жизни выше, чем у взрослого человека, и достигает 6.0-7.0 x 10 12 в 1 литре крови. К 10-14 сут оно равно тем же цифрам, что и во взрослом организме. В последующие сроки происходит снижение числа эритроцитов с минимальными показателями на 3-6-м месяце жизни (т.н. физиологическая анемия). Число эритроцитов возвращается к нормальным значениям в период полового созревания. Для новорожденных характерно наличие анизоцитоза с преобладанием макроцитов, увеличенное содержание ретикулоцитов, а также присутствие незначительного числа ядросодержащих предшественников эритроцитов.

Число лейкоцитов у новорожденных увеличено и достигает 30 x 10 9 в 1 литре крови. В течение 2 нед после рождения число их падает до 9-15 x 10 9 в 1 литре (т.н. физиологическая лейкопения). Количество лейкоцитов достигает к 14-15 годам уровня, который сохраняется у взрослого.

Соотношение числа нейтрофилов и лимфоцитов у новорожденных такое же, как и у взрослых 4.5-9.0 x 10 9 . В последующие сроки содержание лимфоцитов возрастает, а нейтрофилов падает, и к четвертым-пятым суткам количество этих видов лейкоцитов уравнивается - это т.н. первый физиологический перекрест лейкоцитов. Дальнейший рост числа лимфоцитов и падение нейтрофилов приводят к тому, что на 1-2-м году жизни ребенка лимфоциты составляют 65%, а нейтрофилы - 25%. Новое снижение числа лимфоцитов и повышение нейтрофилов приводят к выравниванию обоих показателей у 4-летних детей (это второй физиологический перекрест). Постепенное снижение содержания лимфоцитов и повышение нейтрофилов продолжаются до полового созревания, когда количество этих видов лейкоцитов достигает нормы взрослого.

Лимфа

Лимфа представляет собой слегка желтоватую жидкую ткань, протекающую в лимфатических капиллярах и сосудах. Она состоит из лимфоплазмы (plasma lymphae) и форменных элементов. По химическому составу лимфоплазма близка к плазме крови, но содержит меньше белков. Лимфоплазма содержит также нейтральные жиры, простые сахара, соли (NaCl, Na2CO3 и др.), а также различные соединения, в состав которых входят кальций, магний, железо.

Форменные элементы лимфы представлены главным образом лимфоцитами (98%), а также моноцитами и другими видами лейкоцитов. Лимфа фильтруется из тканевой жидкости в слепые лимфатические капилляры, куда под влиянием различных факторов из тканей постоянно поступают различные компоненты лимфоплазмы. Из капилляров лимфа перемещается в периферические лимфатические сосуды, по ним - в лимфатические узлы, затем в крупные лимфатические сосуды и вливается в кровь.

Состав лимфы постоянно меняется. Различают лимфу периферическую (т.е. до лимфатических узлов), промежуточную (после прохождения через лимфатические узлы) и центральную (лимфу грудного и правого лимфатического протоков). Процесс лимфообразования тесно связан с поступлением воды и других веществ из крови в межклеточные пространства и образованием тканевой жидкости.

Некоторые термины из практической медицины:

· желтуха новорожденных , физиологическая -- транзиторная желтуха (гипербилирубинемия), возникающая у большинства здоровых новорожденных в первые дни жизни;

Тромбоциты и гемостаз

М.А. Пантелеев1-5, А.Н. Свешникова1-3

1Центр теоретических проблем физико-химической фармакологии РАН, Москва; 2ФГБУ ФНКЦ ДГОИ им. Дмитрия Рогачева Минздрава России, Москва; 3физический факультет ФГБОУ ВПО «Московский государственный университет им. М.В. Ломоносова»;

4ФГБУ ГНЦМинздрава России, Москва; 5ООО «ГемаКор», Москва

Контакты: Михаил Александрович Пантелеев [email protected]

Тромбоциты представляют собой безъядерные клеточные фрагменты, играющие важную роль в гемостазе, остановке кровотечения при повреждении, а также в патологическом тромбообразовании. Главным способом выполнения своей функции у тромбоцитов является формирование агрегатов, перекрывающих место повреждения. Способность к агрегации они получают в результате переходного процесса, называемого активацией. Несмотря на относительно простую и однозначную функцию, устройство тромбоцитов весьма сложно: они имеют почти полноценный набор органелл, включая эндоплазматическийретикулум, митохондрии и другие образования; при активации тромбоциты секретируют разнообразные гранулы и вступают во взаимодействия с белками плазмы и клеток крови и других тканей; сама их активация управляется многочисленными рецепторами и сложными сигнальными каскадами. В настоящем обзоре мы рассмотрим устройство тромбоцита, механизмы его функционирования в норме и патологии, методы диагностики нарушений функции тромбоцитов и подходы к их коррекции. Особое внимание будет уделено тем областям науки о тромбоцитах, где до сих пор таятся загадки.

Ключевые слова: структура тромбоцитов, функция тромбоцитов

Platelets and hemostasis M.A. Panteleev1-5, A.N. Sveshnikova1-3

"Theoretical Problems Center of Physical and Chemical Pharmacology, Russian Academy of Sciences, Moscow; 2Federal Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitriy Rogachev,

Ministry of Health of Russia, Moscow; 3Lomonosov Moscow State University, Faculty of Physics, Moscow; 4Hematological Research Center, Ministry of Health of Russia, Moscow; 5HemaCore Company, Moscow

Platelets are anuclear cell fragments playing important role in hemostasis, termination of bleeding after damage, as well as in pathological thrombus formation. The main action of platelets is the formation of aggregates, overlapping the injury. They obtained the ability to aggregate by the transition process called activation. Despite the relatively simple and definite function platelet structure is very difficult: they have almost a full set of organelles, including the endoplasmic reticulum, mitochondria and other entities. When activated platelets secrete various granules interact with plasma proteins and red blood cells and other tissues. Their activation is controlled by multiple receptors and complex signaling cascades. In this review platelet structure, mechanisms of its functioning in health and disease, diagnostic methods of platelet function and approaches to their correction were considered. Particular attention will be given to those areas of the science of platelets, which still lay hidden mysteries.

Key words: platelet structure, platelet function

Введение

Тромбоциты представляют собой маленькие, 2-4 микрометра диаметром, безъядерные клеточные фрагменты (хотя иногда их называют клетками), циркулирующие в кровотоке в концентрации 200-400 тыс. на микролитр и отвечающие за ключевые этапы процесса остановки кровотечения - гемостаза. В случае ранения они способны прикрепляться к поврежденным тканям и друг к другу, формируя тромбоцитарную пробку-агрегат (рис. 1), прекращающую потерю крови и препятствующую попаданию микробов в систему кровообращения. Это не единственный механизм гемостаза, но крайне важный. Наследственные и приобретенные нарушения функции тромбоцитов, такие

как тромбастения Гланцмана или иммунная тромбо-цитопения, являются тяжелыми заболеваниями, для которых характерны опасные кровотечения. Тромбоциты принимают активное участие и в других составляющих механизма гемостаза: одни секретируемые ими вещества вызывают локальную вазоконстрикцию, а другие - ускоряют реакции свертывания крови.

С другой стороны, избыточная функция или количество тромбоцитов, или иные нарушения в сердечно-сосудистой системе могут приводить к формированию тромбоцитарных агрегатов не вне, а внутри сосуда - тромбов (рис. 2). Тромбоцитарные тромбы могут образовываться в самых разных ситуациях и играют центральную роль в таких патологических состо-

Рис. 1. Гемостатический агрегат, формируемый тромбоцитами в артериоле собаки. Наблюдаемая под световым микроскопом картина тромбоцитарной пробки (Н), перекрывающая разорванный сосуд (V). Биопсия произведена через 3 мин после ранения. Многочисленные эритроциты в верхней части снимка располагаются в просвете раны, тянущейся слева направо. Шкала размера в правом нижнем углу соответствует 10 микрометрам. Воспроизведено из

Рис. 2. Формирование тромба в артериоле. Интравитальная ДИК-микроскопия тромбообразования в сосуде крысы, поврежденном посредством фотоактивации красителя бенгальский розовый. Тромб на сосудистой стенке, покрывающий место повреждения, указан в правой верхней части снимка. В нем можно различить отдельные тромбоциты и заметить, что они сохраняют дисковидную форму на первых этапах прикрепления. Направление потока указано стрелкой. Шкала масштаба соответствует 5 микрометрам. Воспроизведено из

яниях, как инфаркты и инсульты. Таким образом, они отвечают за львиную долю смертности и инвалидности в современном мире, а противотромбоцитарные препараты, такие как клопидогрел, занимают почетные места в списке наиболее продаваемых лекарств на планете.

Тромбоциты во многих отношениях устроены просто: у них нет ядра, нет или практически нет синтеза белка, они не могут расти или делиться. Задача тромбоцита - приклеиться к месту повреждения - тоже выглядит простой и однозначной по сравнению с задачами практически любой иной клетки. Но на практике оказывается, что эта простота обманчива. Для выполнения своей функции они должны активироваться в процессе, который управляется добрым десятком активаторов, действующих через многочисленные рецепторы. Сеть сигнальных путей в тромбоците, управляющих его ответом, является сложной и плохо изученной. Сам по себе ответ тромбоцита представляет собой не простое «приклеивание», а включает десятки функций, начиная от первичной адгезии и заканчивая везикуляцией.

Кроме фундаментальных сложностей, тромбоциты таят в себе немало практических загадок: в настоящий момент в руках врачей нет ни сколько-нибудь адекватного теста для оценки функции тромбоцитов, ни действенного инструмента ее улучшения. Несмотря на огромный прогресс, достигнутый в конце XX века в связи с разработкой лекарственных препаратов-антагонистов гликопротеина IIb-IIIa и рецептора P2Y12, подавление активности тромбоцитов в целях борьбы с тромбозами все еще не является решенной проблемой. Наконец, сейчас разворачивается интенсивное исследование роли тромбоцитов за пределами гемостаза - в ангиогенезе, иммунитете и других системах.

Как клинические, так и биологические исследования тромбоцитов привлекают огромный интерес специалистов во всем мире. Практически каждый год приносит нам новые открытия, и представления о важнейших процессах буквально за последние годы претерпели радикальные изменения. В настоящем обзоре мы постарались сосредоточиться на фундаментальных представлениях о тромбоците и рассказать о последних достижениях в понимании его функционирования. Тем, кто желает ближе познакомиться с разными аспектами жизни этой удивительной клетки, можно порекомендовать основополагающий учебник А.В. Мазурова . Владеющие английским языком найдут ценную информацию в учебнике-справочнике Platelets под редакцией Алана Майкельсона , который регулярно переиздается.

Строение тромбоцита

В исходном, неактивированном виде тромбоциты напоминают двояковыпуклые «тарелочки» (рис. 3, слева). Благодаря своему маленькому размеру (2-4 микрона в диаметре) они свободно проходят через капилляры,

Рис. 3. Тромбоциты. Электронная микрофотография неактивированных тромбоцитов, сохраняющих дисковидную форму (слева), и активированных АДФ тромбоцитов в агрегате (справа). Воспроизведено из

так что их форма постоянна, в отличие от вынужденных протискиваться через капилляры эритроцитов. Только при активации форма тромбоцита меняется, становясь в большинстве случаев амебовидной (рис. 3, справа). Форма тромбоцита поддерживается как спек-триновым цитоскелетом, придающим их оболочке упругость, так и кольцом из тубулиновых микротрубочек (рис. 4), которое разрушается при активации. Цитоплазма клетки содержит многочисленные гранулы, главными из которых являются плотные гранулы, содержащие преимущественно низкомолекулярные вещества, такие как серотонин и аденозиндифосфат (АДФ), и альфа-гранулы, содержащие белки - фибриноген, тромбоспондин, Р-селектин, фактор свертывания V, фактор фон Виллебранда и многие другие . Содержимое этих гранул секретируется при актива-

ции. Важно отметить, что форма тромбоцита во многих отношениях является иллюзорной. Его внутренняя среда на самом деле представляет собой сплошную «губку», сеть мембранных каналов, которая служит дополнительным источником мембранной поверхности при активации и способствует секреции гранул .

Способность к активации - быстрому и в большинстве случаев необратимому переходу в некое новое состояние - является главным качеством тромбоцита. Стимулом активации может служить практически любое значительное возмущение окружающей среды, вплоть до простого механического напряжения. Однако основными физиологическими активаторами тромбоцитов считаются: 1) коллаген - главный белок внеклеточного матрикса; 2) тромбин - сериновая про-теиназа, центральный фермент плазменной системы свертывания; 3) АДФ - адениновый нуклеотид, который выделяется из разрушенных клеток сосуда или секре-тируется плотными гранулами самих тромбоцитов; 4) тромбоксан А2 - липид из класса эйкозаноидов, синтезируемый и выделяемый тромбоцитами.

Действие каждого из тромбоцитарных активаторов опосредуется через специализированные рецепторы в мембране тромбоцита. Так, коллаген активирует тромбоциты через гликопротеин VI, тромбин имеет 2 главных протеиназ-активируемых рецептора PAR1 и PAR4, действие АДФ происходит через пуринорецепторы P2Y1 и P2Y12. Стимуляция любого из рецепторов ведет к активации сложной сети каскадов внутриклеточной сигнализации, которые управляют ответом клетки; причем разные рецепторы в целом запускают разные пути.

Мембрана

Открытая канальцевая система

Кольцо из микротрубочек

Плотные гранулы

а-гранулы

Митохондрии

Плотная трубчатая система

Гликоген

Плотные гранулы

Рис. 4. Структура тромбоцита. На схеме слева можно различить основные элементы структуры тромбоцита, наблюдаемые под электронным микроскопом. Воспроизведено из . Справа показана трехмерная реконструкция внутренностей тромбоцита по данным электронной томографии. Обратите внимание, что показанная синим каналикулярная система занимает огромную долю объема клетки. Воспроизведено из

Активация тромбоцитов внешне проявляется многочисленными внутренними перестройками и изменениями свойств, основными среди которых считаются: 1) изменение формы на амебовидную, для части тромбоцитов - сферическую ; 2) усиление способности к адгезии - прикреплению к месту повреждения ; 3) появление способности к агрегации - прикреплению к другим тромбоцитам с целью формирования полноценной пробки; 4) секреция описанных выше многочисленных низко- и высокомолекулярных соединений из плотных гранул, альфа-гранул и других источников; 5) экспонирование прокоагулянтной мембраны.

Часть этих свойств служит для реализации главной функции тромбоцитов - формирования гемостатичес-кой пробки, другая - для ускорения реакций свертывания крови. Так, экспонирование прокоагулянтной мембраны и секреция альфа-гранул необходимы для осуществления именно второй функции тромбоцитов.

Свертывание крови представляет собой каскад реакций в плазме крови, который заканчивается формированием сети волокон фибрина и переводом крови из жидкого состояния в желеобразное . Многие ключевые реакции свертывания являются мембранно-зависимыми (рис. 5), ускоряясь на многие порядки в присутствии отрицательно заряженных фосфоли-пидных мембран, с которыми белки свертывания связываются посредством так называемых кальциевых мостиков. В нормальном состоянии мембрана тромбоцитов не поддерживает реакций свертывания. Отрицательно заряженные фосфолипиды, в первую очередь фосфатидилсерин, сосредоточены на внутреннем

слое мембраны, а фосфатидилхолин внешнего слоя связывает факторы свертывания гораздо хуже. Несмотря на то, что некоторые факторы свертывания могут связываться и с неактивированными тромбоцитами, это не приводит к формированию активных ферментативных комплексов.

Активация тромбоцита, предположительно, приводит к активации фермента скрамблазы, который начинает быстро, специфично, двусторонне и АДФ-независимо перебрасывать отрицательно заряженные фосфолипиды из одного слоя в другой. В результате происходит ускоренное установление равновесия, при котором концентрация фосфатидилсерина в обоих слоях становится одинаковой. Кроме того, при активации имеет место экспозиция и/или конформаци-онное изменение многих трансмембранных белков внешнего слоя мембраны, и они приобретают способность специфически связывать факторы свертывания, ускоряя реакции с их участием. Что интересно, только часть тромбоцитов проявляет такие свойства при активации .

Вообще говоря, активированное состояние тромбоцита может быть разным: активация тромбоцитов имеет несколько степеней, и экспрессия прокоагулянт-ной поверхности является одной из высших. Только тромбин или коллаген могут вызывать такой сильный ответ. Более слабые активаторы, особенно АДФ, могут вносить вклад в работу сильных активаторов . Однако они не способны самостоятельно вызвать выход фосфатидилсерина на внешний слой мембраны; их эффекты сводятся к изменению формы, агрегации и секреции части гранул.

Рис. 5. Мембранные реакции свертывания крови. Активация тромбоцитов ведет к появлению фосфатидилсерина во внешнем слое мембраны тромбоцитов. Факторы свертывания связываются с такими мембранами посредством кальциевых мостиков, формируя комплексы белков, в которых реакции свертывания ускоряются на порядки. На иллюстрации изображен комплекс протромбиназы, состоящий из факторов Ха, Уа, II, находящийся на поверхности бислойной мембраны

Как работает тромбоцит

Наиболее распространенным способом тестирования состояния системы тромбоцитарного гемостаза в современной диагностической практике является агрегация, в которой по оптической плотности оценивается эффект добавления к суспензии тромбоцитов некоторого активатора. Активатор, чаще всего АДФ или коллаген, добавляется к обогащенной тромбоцитами плазме крови при постоянном перемешивании на протяжении нескольких минут. Тромбоциты активируются, взаимодействуют друг с другом, и происходит формирование агрегатов, которое можно заметить по уменьшению мутности суспензии, вызванному уменьшением количества рассеивающих свет частиц. Существуют варианты теста агрегации, связанные с иными принципами детекции: например, можно измерить агрегацию тромбоцитов в цельной крови, если использовать импедансный метод вместо оптического.

Возможно, именно в связи с распространенностью теста агрегации за последние десятилетия в умах многих специалистов утвердилось представление, что формирование тромбоцитарного тромба или гемостатической пробки в организме происходит похожим способом: сначала активация (например, выделившимся из кле-

ток поврежденной стенки сосуда АДФ), а потом агрегация. Несмотря на то, что исследование роста тромбо-цитарного тромба в проточных камерах имеет историю длиной почти в полвека, только в последние десятилетия этот традиционный взгляд начал подвергаться сомнению .

Рассмотрим первую стадию формирования тромба: адгезии тромбоцитов к коллагену, экспонированному в месте повреждения. Попробуем оценить времена и расстояния, типичные для этого процесса. Пусть характерный размер области повреждения будет составлять, скажем, l = 10 микрометров (1 оторвавшаяся клетка эндотелия). Пусть скорость потока будет артериальной, это означает градиент скорости потока на стенке около u = 1000 с - 1. Тогда тромбоцит, имеющий характерный размер (по порядку величины) около x = 1 микрометра, будет двигаться около стенки со скоростью v = x х u = 1000 микрометров в секунду. Это означает, что он пролетит над местом повреждения за время l/v = 10 микросекунд при том, что типичное время активации тромбоцита составляет минуты, для каких-то событий (скажем, активация интегринов) несколько секунд, но никак не одну сотую секунды. Отсюда следует единственный возможный вывод, который к настоящему моменту подкреплен экспериментально : чтобы нормально активироваться, тромбоцит должен сначала прикрепиться к месту повреждения.

Более того, то же самое применимо и к последующим событиям увеличения размера тромба - агрегации. Тромбоцит, проплывающий над растущим в артерии тромбом, должен успеть присоединиться к нему за сотые доли секунды. Поэтому агрегация в организме может идти тоже только одним образом: сначала агрегация, а потом активация.

Еще одна проблема - это перемещение тромбоцита в сосуде поперек потока крови. Если бы тромбоциты были равномерно распределены в крови и спокойно перемещались с ламинарным потоком вдоль сосуда (а при ранении - вдоль раны), каждый по своей линии тока, то они не могли бы подойти к месту повреждения, чтобы выполнить свою задачу в гемостазе: для адгезии к месту повреждения или присоединения к уже активированному тромбоциту в тромбе необходимо воздействие какой-то физической силы, приводящей клетки в контакт. В тестах in vitro эта задача выполняется обычно магнитной мешалкой; а что работает в организме?

Вышеописанные рассуждения не могут, разумеется, служить доказательством новой картины тромбо-цитарного гемостаза и тромбоза. Эта новая картина, которая будет изложена ниже, сложилась в последние 10 лет в результате активной экспериментальной работы многих исследователей, ведущую роль среди которых играет лаборатория Shaun P. Jackson в Австралии ; при этом подавляющее большинство результатов получено с помощью видеомикроскопических

наблюдений за тромбообразованием in vivo. Представленные вниманию читателя численные оценки призваны лишь показать нереальность и внутреннюю противоречивость традиционного представления об агрегации тромбоцитов.

Как же происходит формирование тромбоцитар-ного тромба в реальности?

Первым шагом является вытеснение тромбоцитов к стенкам сосуда, осуществляемое эритроцитами. Красные клетки крови занимают почти половину ее объема, они на порядок превосходят тромбоциты как по концентрации, так и по массе. Столкновения эритроцитов, двигающихся с разными скоростями на разных линиях тока, между собой ведут к их перераспределению и концентрации у оси сосуда. Многие детали этого процесса неясны, но подобные перераспределения наблюдались в суспензиях частиц самого разного типа, не только в крови . Легкие и малочисленные тромбоциты оказываются постоянно вытеснены на периферию, что крайне удобно, так как именно там, около потенциальных мест повреждения, находится их рабочее место; таким образом, локальная концентрация тромбоцитов у стенки сосуда на порядок превышает среднюю по крови.

Более того, даже у стенок сосуда тромбоциты постоянно терпят столкновения с эритроцитами, что ведет фактически к тому самому перемешиванию, которое необходимо для возникновения взаимодействия . Благодаря таким столкновениям тромбоциты часто прижимаются к стенке, и если там оказывается место повреждения, они могут к нему прикрепиться. Помимо 2 главных механизмов, для которых построены надежные теории, - вытеснения и постоянного толкания - сейчас обсуждаются и другие, но бесспорным является экспериментальный факт: присутствие эритроцитов больше чем в 10 раз увеличивает скорость роста тромбоцитарного агрегата на поврежденной поверхности .

Второй проблемой является необходимость быстрой и бережной остановки тромбоцита, оказавшегося у места повреждения или около растущего тромба. Чтобы принять участие в формировании гемостати-ческой пробки или тромба, тромбоцит должен погасить свою немалую скорость. Для этого служит специальный рецептор на тромбоцитах, гликопротеин Ib-V-IX, и растворенный в крови фактор фон Вил-лебранда (рис. 6). Этот фактор, циркулирующий в виде больших мультимеров до 100 нанометров в диаметре, способен обратимо связываться с коллагеном и тромбоцитами в составе тромба, так что он быстро покрывает их. Проносящиеся мимо тромбоциты цепляются за фактор фон Виллебранда и начинают останавливаться. Если бы они связывали коллаген напрямую, то резкая их остановка могла бы повредить, но слабо привязанный фактор фон Виллебранда может отсоединяться и вновь присоединяться к коллагену, так что тромбоциты могут достаточно быстро ос-

тановиться, проскользив всего несколько своих длин, как самолет, садящийся на брюхо.

Активация в таком подходе оказывается не первой, а последней стадией в формировании тромба. Обратимо связавшийся с местом повреждения тромбоцит может оторваться; однако активация способна его стабилизировать. Тромбоциты первого слоя, севшие непосредственно на коллаген, активируются коллагеном же через рецептор гликопротеин VI и затем прочно связываются с коллагеном через рецептор ин-тегрин а2р1: белки этого семейства способны менять свою конформацию и прочность связывания с мишенью под действием внутриклеточных сигналов (рис. 6). В своем обычном состоянии он не взаимодействует с коллагеном, а при активации крепится к нему прочно.

Прикрепление следующих слоев тромбоцитов, т. е. собственно рост тромба, происходит аналогичным образом: сначала клетки непрочно садятся на фактор фон Виллебранда, а после активации надежно закрепляются через рецепторы-интегрины. Разница заключается в том, что тромбоциты между собой связываются через другой интегрин, называемый аПbp3 (или гликопротеин Пb-Шa): эти рецепторы «хватают» с 2 сторон молекулы фибриногена и через такие «фибрино-геновые мостики» связывают отдельные тромбоциты. Второе отличие заключается в том, что следующие слои тромбоцитов активируются не контактом с коллагеном (который уже закрыт первым слоем), а растворимыми активаторами, которые либо секретируются самими тромбоцитами (АДФ, тромбоксан А2), либо образуются в ходе работы плазменной системы свертывания (тромбин). Важно подчеркнуть еще раз, что эти активаторы действуют исключительно в пределах тромба: быстрый поток за его пределами уносит их, не давая возможности рекрутировать новые клетки в тромб.

Картина роста тромбоцитарного тромба in vivo сейчас достаточно устоялась, и описанная выше последовательность событий считается общепризнанной. Тем не менее в ней хватает неясных мест, которые будут обсуждаться ниже.

Проблемы диагностики функции тромбоцитов

В настоящий момент диагностика функций тромбоцитов не менее чем на 90 % производится с помощью исследования агрегации. Принципы и недостатки этого подхода обсуждались выше; главной проблемой является то, что ни один из тестов агрегации не соответствует тому, что происходит in vivo.

Наверное, еще 10 % функциональной оценки обеспечивается проточной цитометрией, которая позволяет определить антигенный состав белков на поверхности тромбоцита. Наиболее подготовленные специалисты могут также использовать цитометрию для более детальной характеризации функций тромбоцитов: активации интегринов, выхода гранул и фосфатидилсерина. Это дает полезную информацию об отдельных молекулах и способностях клетки. Тем не менее все это не дает ответа на общий вопрос: как адекватно оценить функцию тромбоцитов в целом?

Наиболее естественный ответ: надо заставить тромбоциты формировать тромбы в условиях, приближенных к физиологическим. В настоящее время все большее применение набирают проточные камеры , в которых адгезия тромбоцитов к покрытой коллагеном подложке изучается с помощью микроскопии. В настоящий момент уже существуют коммерчески доступные камеры и ведется их стандартизация, хотя до сколько-нибудь значимого клинического применения в практике диагностического комплекса еще далеко. Возможным соперником для видеомикроскопии являются похожие подходы, использующиеся

У GP Ib-V-IX | GP VI

неакт акт

коллаген

Рис. 6. Основной механизм начального роста тромбоцитарного тромба. Первичное закрепление тромбоцита в месте повреждения происходит путем взаимодействия главного адгезионного рецептора гликопротеина Ш-У-1Х с молекулой-посредником фактором фон Виллебранда (уЩ), закрепленным на обнажившемся коллагене (шаг 1). Затем сигнальный рецептор гликопротеин VI связывается с коллагеном, что ведет к активации тромбоцитов (шаг 2). Активация агрегационныхрецепторов интегринов а2р1 (служит для связывания коллагена) и аШрЗ (для связывания через фибриногеновые мостики с другими тромбоцитами) способствует закреплению активированного тромбоцита на коллагене (шаг 3) и создает основу для дальнейшего роста тромба. Воспроизведено из

в приборах типа РБЛ , где оценивается способность тромбоцитов забивать агрегатами картридж, через который прокачивается цельная кровь.

Проблемы коррекции функции тромбоцитов

Контроль функции тромбоцитов является одним из главных способов борьбы с артериальными тромбозами практически любой природы. Исходно основным препаратом для этой цели был аспирин, блокирующий синтез тромбоксана А2: несмотря на давнюю историю препарата, только во 2-й половине XX века была открыта его способность подавлять тромбообра-зование и снижать риск инфаркта. В 1990-е годы появились эффективные антиагреганты, атакующие рецептор к фибриногену, интегрин аПЪрЗ: абциксимаб, тирофибан, эптифибатид , а также отечественный препарат монафрам. Сейчас оба этих класса препаратов в значительной степени вытесняются ингибиторами аденозиндифосфатного рецептора Р2У12: это в первую очередь клопидогрел, а также прасугрел, тикагрелор и кангрелор . Сейчас активно ведутся работы по созданию новых препаратов, обладающих большей эффективностью и меньшей опасностью кровотечений.

Более сложная задача - как быть, когда тромбоцитов мало или они плохо работают? Технология приготовления и хранения тромбоцитарных концентратов для переливания достигла наилучших результатов к середине 1980-х годов, и принципиальных прорывов с тех пор не произошло. Короткое время жизни, высокий риск иммунных осложнений и инфицирования пациента, непрерывно усугубляющийся во всем мире дефицит доноров, отсутствие вплоть до самого последнего времени искусственных заменителей делают ситуацию с переливанием тромбоцитов крайне неудовлетворительной, возможно, самой проблемной среди всех компонентов крови.

На протяжении все тех же последних десятилетий единственной доступной для клинического использо-

вания альтернативой обычным тромбоконцентратам было криоконсервирование, позволявшее продлить срок их жизни до нескольких лет. Но решить проблему сохранения свойств тромбоцитов при замораживании и размораживании до конца так и не удалось. К тому же замораживание этих клеток оказалось связано с таким количеством технических сложностей, что вплоть до настоящего времени оно не смогло составить успешную конкуренцию использованию незамороженных тромбоконцентратов.

Именно поэтому с каждым годом все большее внимание уделялось начатым еще в 1950-е годы работам по созданию новых препаратов и методов, способных радикально продлить срок жизни и удобство использования донорских тромбоцитов, а то и создать возможные аналоги, позволяющие полностью отказаться от их использования. Антибактериальные препараты и ингибиторы жизнедеятельности тромбоцитов, новые криоконсерванты и протоколы заморозки, лиофилизированные тромбоциты и везикулы на основе тромбоцитарных мембран, эритроциты с гемоста-тической функцией и липосомы - вот далеко не полный список подходов, применявшихся для достижения этой цели. Некоторые из них - например, лиофили-зированные тромбоциты Б1а$1х - уже сейчас находятся в активных клинических исследованиях .

Загадки тромбоцитов

Субпопуляции. Одна из наиболее интригующих загадок тромбоцитов - их гетерогенность. При активации тромбоцитов формируются 2 субпопуляции с драматически разными свойствами . Их формирование управляется не до конца исследованными сигнальными путями . Интересно, что одна из этих субпопуляций ускоряет реакции свертывания, а вторая способна к нормальной агрегации (рис. 7). Это разделение 2 главных функций тромбоцитов интригует , но объяснений ему пока не предложено.

Рис. 7. Субпопуляции тромбоцитов крови радикально различаются по способности к ускорению реакций свертывания и агрегации. Точечные диаграммы суспензии неактивированных (слева) и активированных (справа) тромбоцитов на проточном цитометре. По оси абсцисс отложена флуоресценция аннексина V, маркера фосфатидилсерина. По оси ординат показана флуоресценция фибриногена. Видно, что при активации формируются 2 субпопуляции тромбоцитов, из которых одна на порядки превосходит другую по уровню фосфатидилсерина, но настолько же уступает по связыванию фибриногена. Воспроизведено из

Остановка роста тромба. Выше мы рассмотрели последовательность событий, происходящих в процессе роста тромбоцитарного тромба. Одной из самых больших проблем, которые до сих пор остаются нерешенными, является вопрос об остановке этого роста: почему в каких-то случаях он идет вплоть до полной окклюзии сосуда, а в других сосуд остается свободным? Сейчас существует около десятка гипотез, объясняющих ограниченность размера тромба. Одной из наиболее активно обсуждающихся является предположение о том, что при периодическом разрушении верхней, нестабильной части тромба обнажается сформировавшийся внутри фибрин . Тем не менее этот вопрос еще далек от решения. С большой вероятностью может быть не один механизм остановки, и для разных сосудов эти механизмы могут быть разными.

Тромбоциты и контактный путь. Довольно давно исследователи показали, что тромбоциты потенциально способны активировать свертывание крови по контактному пути . Главными кандидатами на роль активаторов считаются полифосфаты, выходящие из плотных гранул при активации , хотя есть опровержения этой точки зрения . По-видимому, благодаря этой активации контактный путь активации свертывания крови важен для роста тромбоцитарного тромба, как было показано в недавних работах . Это открытие позволяет надеяться на создание новых антитромботических препаратов.

Микровезикулы. Тромбоциты при активации отщепляют липидные микрочастицы, также называемые микровезикулами. Рецепторы на их поверхности сконцентрированы, и поэтому эти частицы обладают колоссальной прокоагулянтной активностью: их поверхность в 50-100 раз более активна, чем поверхность активированных тромбоцитов . Зачем тромбоциты это делают - неясно. Однако в крови даже здоровых людей количество таких везикул значительно, и оно достоверно возрастает у пациентов с различными сердечно-сосудистыми и гематологическими заболеваниями, коррелируя с риском тромбозов. Изучение этих

везикул затруднено их крошечными размерами (30- 300 нм), намного меньше длины волны света .

Тромбоциты в онкологии. Тромбоциты играют двойственную роль при онкологических заболеваниях . С одной стороны, они увеличивают риск и тяжесть венозных тромбозов, характерных для пациентов с опухолями. С другой стороны, они напрямую влияют на течение заболевания, регулируя ангиогенез, рост опухоли и метастазирование с помощью ряда механизмов. Механизмы взаимодействия тромбоцитов с раковыми клетками сложны и плохо изучены, но их исключительная важность сейчас не вызывает сомнения .

Заключение

Тромбоциты крови - важнейшие участники как нормального гемостаза, так и патологического тром-ботического процесса, состояние которых критично для самых разных заболеваний и состояний. В настоящий момент достигнут существенный прогресс на пути к пониманию функционирования тромбоцитов и коррекции тромбоцитарного гемостаза, но количество научных загадок еще очень велико: взаимодействие тромбоцитов с плазменным гемостазом, сложность сигнализации, механизмы регуляции роста и остановки тромбоцитарного тромба. В последнее время появляются сведения о взаимодействии тромбоцитов с другими системами организма, указывающие на их важные роли в иммунитете и морфогенезе. Главными среди практических сложностей являются отсутствие адекватных интегральных тестов функции тромбоцита и затруднительность нормализации этой функции.

Благодарности

Работа авторов поддержана грантом Российского фонда фундаментальных исследований 14-04-00670, а также грантами Программ фундаментальных исследований Российской академии наук «Молекулярная и клеточная биология» и «Фундаментальные исследования для разработки биомедицинских технологий».

ЛИТЕРАТУРА

1. Sixma J.J., van den Berg A. The haemostatic plug in haemophilia A:

a morphological study of haemostatic plug formation in bleeding time skin wounds of patients with severe haemophilia A. BrJ Haematol 1984;58(4):741-53.

2. Maxwell M.J., Westein E., Nesbitt W.S.

et al. Identification of a 2-stage platelet aggregation process mediating shear-dependent thrombus formation. Blood 2007;109(2):566-76.

3. Мазуров А.В. Физиология и патология тромбоцитов. М.: ГЭОТАР-Медиа, 2011. 480 с.

4. Michelson A.D. Platelets. 3rd ed., 2013. London; Waltham, MA: Academic Press, xliv, 1353 p.

5. Ohlmann P., Eckly A., Freund M. et al. ADP induces partial platelet aggregation without shape change and potentiates collagen-induced aggregation in the absence of Galphaq. Blood 2000;96(6):2134-9.

6. White J.G. Electron microscopy methods for studying platelet structure and function. Methods Mol Biol 2004;272:47-63.

7.van Nispen tot Pannerden H., de Haas F., Geerts W. et al. The platelet interior revisited:

electron tomography reveals tubular alpha-granule subtypes. Blood 2010;116(7):1147-56.

8. Blair P., Flaumenhaft R. Platelet alpha-granules: basic biology and clinical correlates. Blood Rev 2009;23(4):177-89.

9. Abaeva A.A., Canault M., Kotova Y.N. et al. Procoagulant platelets form an alpha-granule protein-covered «cap» on their surface that promotes their attachment

to aggregates. J Biol Chem 2013;288(41):29621-32.

10. Kaplan Z.S., Jackson S.P. The role

of platelets in atherothrombosis. Hematology

Am Soc Hematol Educ Program 2011;2011:51-61.

11. Tanaka K.A., Key N.S., Levy J.H. Blood coagulation: hemostasis and thrombin regulation. Anesth Analg 2009;108(5): 1433-46.

12. Panteleev M.A., Ananyeva N.M., Greco N.J. et al. Two subpopulations

of thrombin-activated platelets differ in their binding of the components of the intrinsic factor X-activating complex. J Thromb Haemost 2005;3(11):2545-53.

13. Topalov N.N., Kotova Y.N., Vasil"ev S. A., Panteleev M.A. Identification of signal transduction pathways involved in the formation of platelet subpopulations upon activation. Br J Haematol 2012;157(1):105-15.

14. Yakimenko A.O., Verholomova F.Y., Kotova Y.N. et al. Identification of different proaggregatory abilities of activated platelet subpopulations. Biophys J 2012;102(10):2261-9.

15. Kotova Y.N., Ataullakhanov F.I., Panteleev M.A. Formation of coated platelets is regulated by the dense granule secretion of adenosine 5"diphosphate acting via the P2Y12 receptor. J Thromb Haemost 2008;6(9):1603-5.

16. Uijttewaal W.S., Nijhof E.J., Bronkhorst P.J. et al. Near-wall excess of platelets induced by lateral migration of erythrocytes in flowing blood. Am J Physiol 1993;264(4 Pt 2):H1239-44.

17. Tokarev A.A., Butylin A.A., Ataullakhanov F.I. Platelet adhesion from shear blood flow is controlled by near-wall rebounding collisions with erythrocytes. Biophys J 2011;100(4):799-808.

18. Turitto V.T., Weiss H.J. Red blood cells: their dual role in thrombus formation. Science 1980;207(4430):541-3.

19. Nieswandt B., Brakebusch C., Bergmeieret W. et al. Glycoprotein VI but not alpha2beta1 integrin is essential for platelet interaction with collagen. EMBO J 2001;20(9):2120-30.

20. Westein E., de Witt S., Lamers M. et al. Monitoring in vitro thrombus formation with novel microfluidic devices. Platelets 2012;23(7):501-9.

21. Favaloro E.J., Bonar R. External quality assessment/proficiency testing and internal quality control for the PFA-100 and PFA-200: an update. Semin Thromb Hemost 2014;40(2):239-53.

22. Kristensen S.D., Würtz M., Grove E.L. et al., Contemporary use of glycoprotein IIb/IIIa inhibitors. Thromb Haemost 2012;107(2):215-24.

23. Ferri N., Corsini A.,

Bellosta S. Pharmacology of the new P2Y12 receptor inhibitors: insights on pharmacokinetic and pharmacodynamic properties. Drugs 2013;73(15):1681-709.

24. Bode A.P., Fischer T.H. Lyophilized platelets: fifty years in the making. Artif Cells Blood Substit Immobil Biotechnol 2007;35(1):125-33.

25. Heemskerk J.W., Mattheij N.J., Cosemans J.M. Platelet-based coagulation: different populations, different functions.

J Thromb Haemost 2013;11(1):2-16.

26. Tosenberger A., Ataullakhanov F., Bessonov N. et al. Modelling of thrombus growth in flow with a DPD-PDE method. J Theor Biol 2013;337:30-41.

27. Bäck J., Sanchez J., Elgue G. et al. Activated human platelets induce factor XIIa-mediated contact activation. Biochem Biophys Res Commun 2010;391(1):11-7.

28. Müller F., Mutch N.J., Schenk W.A. et al. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell 2009; 139(6):1143-56.

29. Faxälv L., Boknäs N., Ström J.O. et al. Putting polyphosphates to the test: evidence against platelet-induced activation of factor XII. Blood 2013;122(23):3818-24.

30. Hagedorn I., Schmidbauer S., Pleines I. et al. Factor XIIa inhibitor recombinant human albumin Infestin-4 abolishes occlusive arterial thrombus formation without affecting bleeding. Circulation 2010;121(13):1510-7.

31. Sinauridze E.I., Kireev D.A., Popenko N.Y. et al. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb Haemost 2007;97(3):425-34.

32. Hargett L.A., Bauer N.N. On the origin of microparticles: From «platelet dust»

to mediators of intercellular communication. Pulm Circ 2013;3(2):329-40.

33. Riedl J., Pabinger I., Ay C. Platelets in cancer and thrombosis. Hamostaseologie 2014;34(1):54-62.

34. Sharma D., Brummel-Ziedins K.E., Bouchard B.A., Holmes C.E. Platelets in tumor progression: a host factor that offers multiple potential targets in the treatment of cancer. J Cell Physiol 2014;229(8):1005-15.

Основными структурами (органеллами) тромбоцита являются: (РИСУНОК)

1) наружная мембрана со встроенными в нее гликопротеинами;

2) микротрубочки;

3) микрофиламенты;

4) плотная трубчатая система;

5) гранулы (плотные и a-гранулы);

6) открытая канальцевая система;

7) аморфный белковый слой (гликокаликс).

Наружная мембрана. Двухслойная фосфолипидная мембрана является местом активации и функционирования различных комплексов плазменных факторов коагуляции (рис.5.1.).

В наружную мембрану встроены гликопротеины, выполняющие функции поверхностных рецепторов. Гликопротеин Ib – внутренний трансмембранный протеин. Является рецептором фактора Виллебранда (ФВ). Необходим для адгезии тромбоцита к субэндотелию сосуда. Гликопротеин llb-llla – Ca 2+ -зависимый мембранный белковый комплекс, функционирующий как рецептор фибриногена. Необходим для агрегации тромбоцитов. Связываясь с фибриногеном, приводит к формированию между тромбоцитами фибриногеновых мостиков.

Микротрубочки, которые располагаются непосредственно под мембраной тромбоцита и образуют периферический валик в экваториальной плоскости клетки, состоят из свернутого спиралью тубулина (сократительный белок, сходный с актомиозином). Микротрубочки участвуют в формировании цитоскелета (поддерживают дискоидную форму тромбоцита) и обеспечении сокращения (сжатия) тромбоцита после его активации.

Микрофиламенты – объединенные в пучки нити, содержащие актин. Участвуют в образовании псевдоподий активированных тромбоцитов.

Плотная трубчатая система выборочно связывает двухвалентные катионы, служит резервуаром кальция, местом синтеза тромбоцитарной циклооксигеназы и простагландинов.

Гранулы содержат различные вещества, которые секретируются при активации тромбоцитов и необходимы для их агрегации. Плотные гранулы – электронно-микроскопически плотные частицы, которые содержат высококонцентрированный аденозин дифосфат (АДФ) и Ca 2+ , а также серотонин и другие медиаторы, секретируемые в ходе реакции высвобождения. a -гранулы содержат различные белки, секретирующиеся активированными тромбоцитами (тромбоцитарный фактор 4, b-тромбомодулин, тромбоцитарный ростовой фактор, фибриноген, фактор V, фактор Виллебранда), а также гликопротеины, необходимые для адгезии (наиболее важны тромбоспондин и фибронектин).

Открытая канальцевая система – сеть поверхностных мембранных инвагинаций, значительно увеличивающих поверхностность клетки и площадь ее соприкосновения с плазмой. Содержимое гранул тромбоцита освобождается через эту систему.

Аморфный белковый слой (гликокаликс) толщиной 15-20 нм, прилегающий к мембране тромбоцита, отличается более высо­ким, чем в плазме, содержанием ряда белков, в том числе факторов свертывания крови, транспортируемых тромбоцитами в места оста­новки кровотечения.

5.1.2.2. Функционирование тромбоцитов в гемостазе

Тромбоциты принимают участие во всех основных событиях гемостаза.

1. Выполняют ангиотрофическую функцию (З.С. Баркаган), являясь физиологическими “кормильцами” эндотелия: в среднем за сутки из 1 мм 3 крови поглощается до 35 000 тромбоцитов.

2. Поддерживают спазм поврежденных сосудов путем секреции (высвобождения) вазоактивных веществ – серотонина, катехоламинов, b-томбомодулина и др.

3. Образуют тромбоцитарную пробку, которая является основой полноценного сгустка крови (тромба).

4. Принимают участие в коагуляции и фибринолизе:

а) секретируемые тромбоцитами в ходе реакции высвобождения факторы коагуляции (фибриноген, фактор Виллебранда, фактор V, высокомолекулярный кининоген, фактор XIII) не только взаимодействуют с самими тромбоцитами, но и участвуют в каскаде коагуляции;

б) способствуют контактной активации коагуляции и фибринолиза (поверхность активированных тромбоцитов высокоафинна для фактора XII и высокомолекулярного кининогена, находящихся в комплексе с калликреином и фактором XI);

в) мембрана тромбоцита служит матрицей, на которой происходит ориентация и образование комплексов факторов каскада коагуляции;

г) фактор Виллебранда, играя роль в адгезии тромбоцитов, входит в состав субъединиц фактора VIII и стабилизирует его коагуляционную составляющую.

5. Стимулируют репарацию поврежденной сосудистой стенки (адгезировавшиеся тромбоциты выделяют ростовой фактор, который является стимулятором пролиферации гладкомышечных клеток и эндотелия, а также образования коллагена).

Контакт тромбоцитов с поверхностью поврежденной сосудистой стенки последовательно приводит к: 1) активации клеток; 2) адгезии; 3) первичной агрегации; 4) реакции высвобождения; 5) вторичной агрегации.

Активация . Стимулятором активации тромбоцитов (и одновременно синтеза факторов тромборезистентности клетками эндотелия) являются изменения физических параметров кровотока, развивающиеся в результате турбулентного движения крови в зоне повреждения сосудистой стенки, стенозирования сосуда либо вследствие повышенного артериального давления или увеличенной вязкости крови.

Адгезия – прилипание тромбоцитов к сосудистой стенке на участке ее повреждения.

Тромбоциты не прилипают к интактному (неповрежденному) эндотелию, что обеспечивается наличием физиологических ингибиторов адгезии, продуцирующихся эндотелиальными клетками (простациклин, эндотелиальный фактор релаксации, эндотелин, тканевой активатор плазминогена).

При повреждении эндотелия и контакте с субэндотелиальными структурами тромбоциты в течение нескольких секунд активируются и прилипают к стенке сосуда.

Основными факторами, необходимыми для адгезии тромбоцита к субэндотелию, являются: 1) коллаген (главный стимулятор адгезии и первичной агрегации тромбоцитов); 2) гликопротеин Ib; 3) фактор Виллебранда (ФВ), причем основной рецептор ФВ соединяется с гликопротеином Ib и связывает тромбоцит с субэндотелием, а другой участок молекулы ФВ соединяется с гликопротеином llb-llla; 4) некоторые другие вещества (фибронектин, тромбоспондин), ионы кальция (Ca 2+) и магния (Mg 2+).

В результате стимуляции, запускаемой агонистами тромбоцитарных рецепторов, происходит активация тромбоцитов: клетки набухают, округляются, образуют отростки. Действие агонистов тромбоцитарных рецепторов приводит также к формированию рецептора фибриногена – комплекса гликопротеин IIb-IIIa.

Первичная агрегация лимитирована и обратима и наступает сразу после изменения формы тромбоцитов.

Реакция высвобождения. После начальной стимуляции тромбоциты освобождают содержимое своих гранул через открытую канальцевую систему. Эта секреторная функция тромбоцитов энергетически зависима и обеспечивается клеточными запасами аденозинтрифосфата (АТФ). Из гранул в плазму освобождаютсягранулярный АДФ (стимулятор последующей агрегации), фибриноген, фактор Виллебранда и другие коагуляционные и адгезивные белки, обеспечивающие дальнейшую стимуляцию агрегации, адгезии и связь с каскадом коагуляции.

Синхронно с реакцией высвобождения активируется тромбоцитарная фосфолипаза, что приводит к освобождению арахидоновой кислоты из клеточной мембраны. Арахидоновая кислота метаболизируется ферментом циклооксигеназой (присутствующим в плотной тубулярной системе) до образования различных простагландинов и тромбоксана А 2 . Тромбоксан А 2 – важнейший стимулятор дальнейшей (вторичной) агрегации. Аспирин и другие нестероидные противовоспалительные препараты ингибируют циклооксигеназу, вызывая специфический тромбоцитарный функциональный дефект.

Вторичная агрегация (необратимая) следует за метаболизмом арахидоновой кислоты и отсутствует, когда действие циклооксигеназы заблокировано аспирином.

События после активации тромбоцитов in vivo (рисунок 5.2.).

Адгезия тромбоцитов к субэндотелию поврежденного сосуда одновременно является стимулом (спусковым механизмом) их активации и агрегации.

Обеспечивает агрегацию тромбоцитов фибриноген, связываясьс тромбоцитарными рецепторами (комплексами ГП llb-llla)при активации тромбоцита.

Высвобождение АДФ и продукция тромбоксана А 2. АДФ и TXA 2 усиливают агрегацию и обеспечивают положительную обратную связь до момента образования тромбоцитарной пробки и инициации коагуляции.

Дальнейшую стимуляцию агрегации осуществляет тромбин, мощный тромбоцитарный агонист, продуцируемый системой коагуляции.

Вторичная агрегация. Необратимые тромбоцитарные агрегаты, образующиеся благодаря, в конечном счете, опутываются сетью фибринового сгустка.

Последним этапом первичного гемостаза, который определяется in vitro и, очевидно происходит и in vivo, является ретракция (сокращение) сгустка крови, содержащего агрегировавшие тромбоциты и закрывающего дефект стенки сосуда. Физиологический смысл ретракции состоит в стягивании краев раны и ограничении размера тромботических масс с целью сохранения проходимости сосуда.

Кровяные пластинки, тромбоциты, в свежей крови человека имеют вид мелких бесцветных телец округлой, овальной или веретеновидной формы размером 2-4 мкм. Они могут объединяться (агглютинировать) в маленькие или большие группы (рис. 4.29). Количество их в крови человека колеблется от 2,0×10 9 /л до 4,0×10 9 /л. Кровяные пластинки представляют собой безъядерные фрагменты цитоплазмы, отделившиеся от мегакариоцитов - гигантских клеток костного мозга.

Тромбоциты в кровотоке имеют форму двояковыпуклого диска. При окраске мазков крови азур-эозином в кровяных пластинках выявляются более светлая периферическая часть - гиаломер и более темная, зернистая часть - грануломер, структура и окраска которых могут варьировать в зависимости от стадии развития кровяных пластинок. В популяции тромбоцитов находятся как, более молодые, так и более дифференцированные и стареющие формы. Гиаломер в молодых пластинках окрашивается в голубой цвет (базофилен), а в зрелых – в розовый (оксифилен). Молодые формы тромбоцитов крупнее старых.

В популяции тромбоцитов различают 5 основных видов кровяных пластинок:

1) юные - с голубым (базофильным) гиаломером и единичными азурофильными гранулами в грануломере красновато-фиолетового цвета (1-5 %);

2) зрелые - со слабо-розовым (оксифильным) гиаломером и хорошо развитой азурофильной зернистостью в грануломере (88%);

3) старые - с более темным гиаломером и грануломером (4%);

4) дегенеративные - с серовато-синим гиаломером и плотным темно-фиолетовым грануломером (до 2%);

5) гигантские формы раздражения - с розовато-сиреневым гиаломером и фиолетовым грануломером, размерами 4-6 мкм (2%).

При заболеваниях соотношение различных форм тромбоцитов может изменяться, что учитывается при постановке диагноза. Повышение количества юных форм наблюдается у новорожденных. При онкологических заболеваниях увеличивается число старых тромбоцитов.

Плазмолемма имеет толстый слой гликокаликса (15-20 нм), образует инвагинации с отходящими канальцами, также покрытыми гликокаликсом. В плазмолемме содержатся гликопротеины, которые выполняют функцию поверхностных рецепторов, участвующих в процессах адгезии и агрегации кровяных пластинок.

Цитоскелет в тромбоцитах хорошо развит и представлен актиновыми микрофиламентами и пучками (по 10-15) микротрубочек, расположенными циркулярно в гиоломере и примыкающими к внутренней части плазмолеммы (рис. 46-48). Элементы цитоскелета обеспечивают поддержание формы кровяных пластинок, участвуют в образовании их отростков. Актиновые филаменты участвуют в сокращении объема (ретракции) образующихся кровяных тромбов.



В кровяных пластинках имеется две системы канальцев и трубочек, хорошо видных в гиаломере при электронной микроскопии. Первая – это открытая система каналов, связанная, как уже отмечалось, с инвагинациями плазмолеммы. Через эту систему выделяется в плазму содержимое гранул кровяных пластинок и происходит поглощение веществ. Вторая – это так называемая плотная тубулярная система, которая представлена группами трубочек с электронно-плотным аморфным материалом. Она имеет сходство с гладкой эндоплазматической сетью, образуется в аппарате Гольджи. Плотная тубулярная система является местом синтеза циклооксигеназы и простагландинов. Кроме того, эти трубочки селективно связывают двухвалентные катионы и являются резервуаром ионов Са 2+ . Вышеназванные вещества являются необходимыми компонентами процесса свертывания крови.


А Б В
Г Д

Рис. 4.30.Тромбоциты. А – тромбоциты в мазке периферической крови. Б – схема строения тромбоцита. В – ТЭМ. Г – неактивированные (отмечены стрелкой) и активированные (отмечены двумя стрелками) тромбоциты, СЭМ. Д – тромбоциты, прилипшие к стенке аорты в зоне повреждения эндотелиального слоя (Г, Д – по Ю.А. Ровенских).1 – микротрубочки; 2 – митохондрии; 3 – u-гранулы; 4 – система плотных трубочек; 5 – микрофиламенты; 6 – система канальцев, связанных с поверхностью; 7 – гликокаликс; 8 – плотныетельца; 9 – цитоплазматическая сеть.


Выход Са 2+ из трубочек в цитозоль необходим для обеспечения функционирования кровяных пластинок (адгезия, агрегация и др.).

В грануломере выявлены органеллы, включения и специальные гранулы. Органеллы представлены рибосомами (в молодых пластинках), элементами эндоплазматической сети, аппарата Гольджи, митохондриями, лизосомами, пероксисомами. Имеются включения гликогена и ферритина в виде мелких гранул.

Специальные гранулы в количестве 60-120 составляют основную часть грарануломера и представлены двумя главными типами – альфа и дельта гранулы.

Первый тип: a-гранулы – это самые крупные (300-500 нм) гранулы, имеющие мелкозернистую центральную часть, отделенную от окружающей мембраны небольшим светлым пространством. Они содержат различные белки и гликопротеины, принимающие участие в процессах свертывания крови, факторы роста, гидролитические ферменты.

К наиболее важным белкам, секретируемым при активации тромбоцитов, относятся фактор пластинок 4, р-тромбоглобин, фактор фон Виллебранда, фибриноген, факторы роста (тромбоцитарный PDGF, трансформирующий TGFp), фактор свертывания - тромбопластин; к гликопротеинам относятся фибронектин, тромбоспондин, играющие важную роль в процессах адгезии тромбоцитов. К белкам, связывающим гепарин (разжижает кровь, препятствует ее свертыванию), относятся фактор 4 и р-тромбоглобулин.

Второй тип гранул - δ-гранулы (дельта-гранулы) - представлен плотными тельцами размером 250-300 нм, в которых имеется эксцентрично расположенная плотная сердцевина, окруженная мембраной. Между криптами хорошо выражено светлое пространство. Главными компонентами гранул являются серотонин, накапливаемый из плазмы, и другие биогенные амины (гистамин, адреналин), Са 2+ , АДФ, АТФ в высоких концентрациях.

Кроме того, имеется третий тип мелких гранул (200-250 нм), представленный лизосомами (иногда называемыми А-гранулами), содержащими лизосомные ферменты, а также микропероксисомами, содержащими фермент пероксидазу. Содержимое гранул при активации пластинок выделяется по открытой системе каналов, связанных с плазмолеммой.

Основная функция кровяных пластинок - участие в процессе свертывания крови - защитной реакции организма на повреждение и предотвращение потери крови. В тромбоцитах содержится около 12 факторов, участвующих в свертывании крови. При повреждении стенки сосуда пластинки быстро агрегируют, прилипают к образующимся нитям фибрина, в результате чего формируется тромб, закрывающий рану. В процессе тромбообразования наблюдается несколько этапов с участием многих компонентов крови.

Важной функцией тромбоцитов является их участие в метаболизме серотонина. Тромбоциты – это практически единственные элементы крови, в которых из плазмы накапливаются резервы серотонина. Связывание тромбоцитами серотонина происходит с помощью высокомолекулярных факторов плазмы крови и двухвалентных катионов.

В процессе свертывания крови из разрушающихся тромбоцитов высвобождается серотонин, который действует на сосудистую проницаемость и сокращение гладкомышечных клеток сосудов. Серотонин и продукты его метаболизма обладают противоопухолевым и радиозащитным действием. Торможение связывания серотонина тромбоцитами обнаружено при ряде заболеваний крови – злокачественном малокровии, тромбоцитопенической пурпуре, миелозах и др.

Продолжительность жизни тромбоцитов – в среднем 9-10 дней. Стареющие тромбоциты фагоцитируются макрофагами селезенки. Усиление разрушающей функции селезенки может быть причиной значительного снижения числа тромбоцитов в крови (тромбоцитопения). Для устранения этого требуется операция - удаление селезенки (спленэктомия).

При снижении числа кровяных пластинок, например при кровопотере, в крови накапливается тромбопоэтин - гликопротеид, стимулирующий образование пластинок из мегакариоцитов костного мозга.

Поделитесь с друзьями или сохраните для себя:

Загрузка...