Резонанс — это физическое явление. Теория и реальные примеры. Резонанс — бывает вредный, а бывает полезный Что такое резонанс

РЕЗОНАНС (франц. resonance, от лат. resono - откликаюсь) - частотно-избирательный отклик колебат. системы на периодич. внеш. воздействие, при к-ром происходит резкое возрастание амплитуды стационарных . Наблюдается при приближении частоты внеш. воздействия к определённым, характерным для данной системы значениям. В линейных колебат. системах число таких резонансных частот соответствует числу степеней свободы и они совпадают с частотами собственных колебаний . В нелинейных колебат. системах, реактивные и диссипативные параметры к-рых зависят от величины стороннего воздействия, Р. может проявляться и как отклик на внеш. силовое воздействие, и как реакция на периодич. изменение параметров. В строгом значении термин "Р." относится лишь к случаю силового воздействия.

Резонанс в линейных системах с одной степенью свободы . Пример простейшего случая Р. представляют вынужденные колебания , возбуждаемые сторонним источником - гармонической эдс ~ E 0 cospt с амплитудой Е 0 и частотой p - в колебательном контуре (рис. 1, а).

Рис. 1. Колебательные системы с одной степенью свободы: последовательный (а ) и параллельный (б ) колебательные контуры, математический маятник (в ) и упругий осциллятор (г ),

Амплитуда x и фаза f вынужденных колебаний [q(t) = x cos(pt +f)] определяются амплитудой и частотой внеш. силы:

где F = E 0 /L , d = (R + R i )/2L .

Зависимость амплитуды х стационарных вынужденных колебаний от частоты p вынуждающей силы при постоянной её амплитуде наз. резонансной кривой (рис. 2). В линейном колебат. контуре резонансные кривые, соответствующие различным F , подобны, а фазово-частотная характеристика f(p ) не зависит от амплитуды силы.

Вложение энергии в колебат. контур пропорц. первой степени, а диссипация энергии пропорц. квадрату амплитуды колебаний. Это обеспечивает ограничение амплитуд стационарных вынужденных колебаний при Р. Приближение частоты p к собств. частоте w 0 сопровождается ростом амплитуды вынужденных колебаний, тем более резким, чем меньше коэф. затухания d. При Р. ток, протекающий через контур, I == = px cos(pt + f - p/2), находится в фазе с эдс сторон него источника (f = p/2). Уменьшение амплитуды вынужденных колебаний при неточной настройке обусловлено нарушением синфаз-ности тока и напряжения в цепи.

Важной характеристикой резонансных свойств колебат. системы (осциллятора) является добротность Q ,к-рая, по определению, равна умноженному на 2p отношению энергии, запасённой в системе, к энергии, рассеиваемой за период колебаний. При воздействии на резонансной частоте амплитуда вынужденных колебаний x в Q раз больше, чем в квазистатич. случае, при Число периодов колебаний, в течение к-рых происходит установление стационарной амплитуды, также пропорц. Q . Наконец, определяет частотную избирательность резонансных систем. Ширина полосы Р. Dw, в пределах к-рой амплитуда вынужденных колебаний спадает в раз от х , обратно пропорц. добротности: Dw = w 0 /Q = 2d.

При Р. в электрич. цепях реактивная часть комплексного импеданса обращается в нуль. При этом в после-доват. цепи падения напряжения на катушке и на конденсаторе имеют амплитуду QE 0 . Однако они складываются в противофазе и взаимно компенсируют друг друга. В параллельной цепи (рис. 1, б )при Р. происходит взаимная компенсация токов в ёмкостной и индуктивной ветвях. В отличие от последоват. Р., при к-ром внеш. силовое воздействие осуществляется источником напряжения, в параллельном контуре резонансные явления реализуются только в том случае, когда внеш. воздействие задаётся источником тока. Соответственно Р. в последоват. контуре называют Р. напряжений, а в параллельном контуре - Р. токов. Если в параллельный контур вместо генератора тока включить генератор напряжения, то на резонансной частоте будут выполняться условия не максимума, а минимума тока, поскольку вследствие компенсации токов в ветвях, содержащих реактивные элементы, проводимость цепи оказывается минимальной (явление антирезонанса).

Подобными чертами обладает явление Р. в механич. и др. колебат. системах. В линейных системах, согласно принципу суперпозиции, реакцию системы на периодич. несинусоидальное воздействие можно найти как сумму откликов на каждую из гармонич. компонент воздействия. Если период несинусоидальной силы равен Т , то резонансное возрастание колебаний может происходить не только при условии w 0 ! 2 p, но в зависимости от формы E(t )и при условиях w 0 ! 2pn/T , где n = 1, 2,... (Р. на гармониках).

Резонансные кривые определяют, наблюдая изменение амплитуды вынужденных колебаний либо при медленной перестройке частоты p вынуждающей силы, либо при медленном изменении собств. частоты w 0 . При высокой добротности осциллятора (Q 1) оба способа дают практически одинаковые результаты. Частотные характеристики, полученные при конечной скорости изменения частоты, отличаются от статич. резонансных кривых, соответствующих бесконечно медленной перестройке: на динамич. частотных характеристиках наблюдается смещение максимума в направлении перестройки частоты, пропорц. m, где - время релаксации колебаний в контуре,

Рис. 3. Статические и динамические амплитудно-частотные характеристики резонанса при различных скоростях нарастания частоты: p(t )= w 0 + t/m, m = 0(1) , 0,0625 (г), 0,25(3), 0,695 (4) .


t* - время, в течение к-pогo частота p находится в пределах полосы резонанса Dw. При быстрой перестройке частоты, по мере роста m, происходит уменьшение высоты и расширение резонансных кривых, причём их форма становится более асимметричной (рис. 3).

Резонанс в линейных колебательных системах с несколькими степенями свободы . Колебат. системы с неск. степенями свободы представляют собой совокупность взаимодействующих осцилляторов. Примером может служить пара колебат. контуров, связанных за счёт взаимной индукции (рис. 4). Вынужденные колебания в такой системе описываются ур-ниями


Индуктивная связь приводит к тому, что колебания в отд. контурах не могут происходить независимо друг от друга. Однако для любой колебат. системы с неск. степенями свободы можно найти нормальные координаты, к-рые являются линейными комбинациями независимых переменных. Для нормальных координат система ур-ний, подобная (2), преобразуется в цепочку ур-ний для вынужденных колебаний такого же вида, как для одиночных колебат. контуров, с тем отличием, что воздействие на каждую из нормальных координат оказывают силы, приложенные, вообще говоря, в разных частях совокупной колебат. системы. При рассмотрении законов движения в нормальных координатах справедливы все закономерности Р. в системах с одной степенью свободы.

Рис. 4. Колебательная система с двумя степенями свободы - пара контуров со связью за счёт взаимоиндукции.


Резонансное нарастание колебаний происходит во всех частях колебат. системы на одних и тех же частотах (рис. 5), равных частотам собств. колебаний системы. Нормальные частоты не совпадают с парциальными, т. е. с собств. частотами осцилляторов, входящих в совокупную систему. Если частота сторонней силы равна одной из парциальных частот, то в совокупной системе Р. не наступает. Напротив, в этом случае амплитуды вынужденных колебаний достигают минимума, аналогично случаю антирезонанса в системе с одной степенью свободы. Возможность подавления колебаний, частота к-рых равна одной из парциальных, используется в электрич. фильтрах и успокоителях механич. колебаний.

В системе, состоящей из слабо связанных осцилляторов с одинаковыми парциальными частотами, резонансные максимумы, отвечающие близким нормальным частотам, могут сливаться, так что частотная характеристика имеет один максимум (рис. 6). Увеличение связи между осцилляторами приводит к росту интервала между нормальными частотами системы. Изменение формы резонансных кривых при увеличении коэф. связи иллюстрирует рис. 6. Система осцилляторов при связи, близкой к критической, имеет частотную характеристику, уплощённую вблизи Р., причём крутизна её склонов выше, чем у одиночного осциллятора с таким же уровнем потерь. Это свойство обычно используется для создания полосовых электрич. фильтров.

Рис. 6 . Резонансные кривые двухконтурной колебательной системы при gQ = 1(1 ), и 2(3); g = M/L, L 1 = L 2 .

Резонанс в распределённых колебательных системах . В распределённых системах (см. Система с распределёнными параметрами )амплитуда и фаза колебаний зависят от пространственных координат. Линейные распределённые колебат. системы характеризуются набором нормальных частот и собств. ф-ций, к-рые описывают пространственное распределение амплитуд собств. колебаний. Резонансные свойства (добротность) распределённых систем определяются не только собств. затуханием, но и связью с окружающей средой, в к-рую происходит излучение части энергии колебаний (электрич., упругих и др.). В распределённых системах, обладающих высокой добротностью (Q 1) , вынужденные колебания представляют собой , пространственное распределение амплитуд к-рых является суперпозицией собств. ф-ций (мод), а фаза колебаний одинакова во всех точках. Действие сторонних сил с частотами, близкими к собственным, ведёт к резонансному нарастанию амплитуды вынужденных колебаний во всех точках объёма распределённой резонансной системы (резонатора).

В распределённых системах сохраняют силу все общие свойства Р. Особенностью Р. в распределённых системах (равно как и в системах с неск. степенями свободы) является зависимость амплитуд вынужденных колебаний не только от частоты, но и от пространственного распределения вынуждающей силы. Р. наступает, если пространственное распределение внеш. силы повторяет форму собств. ф-ции, а частота равна соответствующей нормальной частоте. При неблагоприятном пространственном распределении сторонней силы вынужденные колебания не возбуждаются. Это происходит, в частности, тогда, когда сосредоточенная сила прикладывается в точках, для к-рых амплитуда соответствующего нормального колебания обращается в нуль. Так, прикладывая сосредоточенную силу в точке, являющейся узловой для перемещений струны, невозможно возбудить её колебания, поскольку работа силы будет равна нулю. Если распределение сил таково, что работа, совершаемая ими в разл. частях системы, имеет противоположные знаки и в целом не приводит к изменению энергии, вынужденные колебания также не возбуждаются.

Резонанс в нелинейных колебательных системах. В упругих системах нелинейным элементом является пружина, для к-рой связь между деформацией и упругой силой нелинейна, т. е. нарушается . В электрич. системах примером нелинейного диссипа-тивного элемента является диод, вольт-амперная характеристика к-рого не подчиняется закону Ома. Нелинейными реактивными (энергоёмкими) элементами являются конденсаторы с или катушки индуктивности с ферритовыми сердечниками. Параметры этих элементов - ёмкость, индуктивность, сопротивление, а также собств. частоту и коэф. затухания в нелинейных системах можно считать ф-циями тока или напряжения. При этом в нелинейных системах не выполняется суперпозиции принцип .

В нелинейных системах гармонич. сила возбуждает негармонич. колебания, в спектре к-рых имеются кратные частоты, поэтому Р. на гармониках происходит p при синусоидальной внеш. силе. В колебат. системах, обладающих достаточно высокой добротностью и частотной избирательностью, наиб. амплитуду имеет та спектральная компонента, частота к-рой близка к частоте Р. Рассматривая лишь колебания с частотой, близкой к резонансной, можно и в этом случае получить семейство резонансных кривых. Для системы с нелинейными реактивными (энергоёмкими) элементами при r ! w 0 эти кривые изображены на рис. 7. Форма резонансной кривой зависит от амплитуды вынуждающей силы и по мере её увеличения становится всё более асимметричной. Поскольку частота собств. колебаний нелинейного осциллятора зависит от их амплитуды, то и максимумы на резонансных кривых сдвигаются в сторону более высоких или более низких частот. Начиная с нек-рого значения амплитуды силы, резонансные кривые приобретают неоднозначную клювообразную форму. В определённом интервале частот стационарная амплитуда вынужденных колебаний оказывается зависящей от предыстории установления колебаний (явление колебат. гистерезиса). При этом части резонансных кривых, соответствующих неустойчивым состояниям, образуют на плоскости (х, р )область физически нереализуемых режимов (на рис. 7 заштрихована).

Рис. 7 . Семейство амплитудно-частотных кривых в случае нелинейного резонанса при различных амплитудах сторонней силы (F 1 < F 2 < < F 3 < F 4 ) . Пунктир - неустойчивый участок резонансной кривой. Заштрихована область неустойчивых состояний. Стрелками отмечены точки скачкообразного изменения амплитуд колебаний при перестройке частоты вверх (АВ ) и вниз (CD).


На явление нелинейного Р. в распространённых колебат. системах могут оказать существ. влияние эффекты самофокусирования и образования ударных волн, особенно в тех случаях, когда на длине укладывается большое число волн.

Явления, родственные резонансу. В нелинейных колебат. системах внеш. периодич. воздействие вызывает не только возбуждение вынужденных колебаний, но и модуляцию энергоёмких и диссипативных параметров. Явление возбуждения колебаний при периодич. модуляции энергоёмких параметров наз. па-раметрич. резонансом.

Если глубина модуляции энергоёмкого параметра недостаточна для возбуждения параметрич. Р., в колебат. системе происходит частичное восполнение потерь. Резонансный отклик на действие слабого сигнала с частотой р! w 0 при этом такой же, как у линейного осциллятора с более высокой добротностью. Кроме того, образуются колебания комбинац. частот + n w М, где w М - частота модуляции параметра, При совпадении частоты р и (w М - р ) вынужденные колебания в параметрически регенерированной системе зависят от соотношений между фазами параметрич. воздействия и слабой силы (сигнала). При этом может происходить как увеличение, так и уменьшение амплитуды вынужденных колебаний по сравнению с отсутствием параметрич. регенерации (явления "сильного", и "слабого" Р.).

Эффект регенерации потерь и повышения эквивалентной добротности имеют место в резонансных системах с нелинейными потерями, к-рые содержат элементы С отрицательным дифференциальным сопротивлением пли цепи положительной обратной связи . Такие системы наз. потенциально автоколебательными. Если на потенциально автоколебат. систему воздействует пе-рподич. сила значит. амплитуды с частотой р , она может влиять на затухание колебаний в системе так, что в течение определённой доли периода действия силы затухания оно становится отрицательным. В результате в потенциально автоколебат. системе возбуждаются колебания на частоте w, близкой к собственной, если дополнительно выполнено условие w = р /n . Случай n = 1 отвечает синхронизации частоты внеш. силой. При n 2 данное явление носит назв. автопараметрич. возбуждения, по аналогии с параметрическим резонансом, в отличие от к-рого при автопараметрич. возбуждении происходит модуляция не энергоёмких, а диссипативных параметров системы.

Термин "Р." употребляется и по отношению к процессам в квантовых системах, когда частота внеш. воздействия (излучения) равна частоте квантового перехода, так что выполняется условие

где - энергия соответственно n -, m - го уровней квантовой системы. При выполнении (3) резко возрастают вероятности квантовых переходов, что проявляется как увеличение интенсивности обмена энергией - поглощения и излучения (см. Квантовая электроника, Лазер) .

Р. может быть причиной неустойчивости и разрушений механич. инженерных конструкций и электрич. сетей. В вибропреобразователях Р. позволяет достигать значит. амплитуд упругих колебаний благодаря периодич. действию сравнительно слабой силы. В радиофизике и радиотехнике явление Р. лежит в основе мн. способов фильтрации сигналов разных частот, обнаружения и приёма слабых сигналов.

Лит.: Горелик Г. С., Колебания и волны, 2 изд., М., 1959; Стрелков С. П., Введение в теорию колебаний, 2 изд., М., 1964; Харкевич А. А. , Избр. труды, т. 2, М., 1973; Основы теории колебаний, под ред. В. В. Мигулина, 2 изд., М., 1988. Г. В. Белокопытов .

Суть явления резонанса (в переводе с латинского – «звучу в ответ» или «откликаюсь») состоит в резком увеличении размаха собственных колебаний, наблюдаемых в структурах, подверженных воздействию внешних факторов. Основное условие его возникновения – совпадение частоты этих внешних по отношению к системе колебаний с её собственными частотными параметрами, вследствие чего они начинают работать «в унисон».

Виды резонансных явлений

Наиболее часто резонанс в физике наблюдается при изучении так называемых «линейных» образований, параметры которых не зависят от текущего состояния. Типичным их представителем являются структуры с одной степенью свободы (к ним можно отнести груз, подвешенный на пружинке, или цепь с последовательно включённой индуктивностью и емкостным элементом).

Обратите внимание! В обоих этих случаях предполагается наличие внешнего по отношению к данной системе воздействия (механического или электрического).

Рассмотрим, что такое резонанс, и в чём состоит его суть более подробно.

Явление резонанса может наблюдаться в конструкциях со следующим механическим устройством. Допустим, что имеется груз массой M, свободно подвешенный на упругой пружине. На него действует внешняя сила, амплитуда которой меняется по синусоиде:

Для оценки характера колебаний такой системы необходимо воспользоваться законом Гука, согласно которому обусловленная пружиной сила равна kx, где х – величина отклонения массы M от среднего положения. Коэффициент k описывает внутренние свойства, связанные с её упругостью.

Исходя из этих предположений и после применения несложных математических выкладок, удаётся получить результат, позволяющий сделать следующие выводы:

  • Вынужденные механические колебания относятся к разряду гармонических явлений, имеющих частоту, совпадающую с тем же параметром для внешнего раздражителя;
  • Амплитуда (размах), а также фазовые характеристики механических структур зависят от того, как соотносятся её собственные параметры с характеристиками гармонического воздействия;
  • Когда на линейную систему подавался сигнал или механическое воздействие, меняющееся не по синусоидальному закону, резонансные явления наблюдались лишь в особых ситуациях;
  • Для их появления необходимо, чтобы во внешней подкачке (сигнале) содержались гармонические составляющие, сравнимые с собственной частотой системы.

Каждая из этих составляющих, даже если их обнаружится несколько, будет вызывать свой резонансный отклик. Причём комплексная реакция (согласно суперпозиционному принципу) равняется сумме тех же откликов, наблюдаемых от действия каждой из внешних гармонических составляющих.

Важно! В том случае, когда в таком воздействии совсем не содержится компонентов с близкими частотами, резонанс наступить вообще не сможет.

Для анализа всех компонентов смесей, резонирующих с системными частотами, используется метод Фурье, позволяющий раскладывать сложное колебание произвольной формы на простейшие гармонические составляющие.

Электрический колебательный контур

В электрических цепочках, состоящих из ёмкостной компоненты С и катушки индуктивности L, при наблюдении резонансных явлений нужно различать следующие две отличные по характеристикам ситуации:

  • Последовательное соединение элементов в контуре;
  • Параллельное их включение.

В первом случае при совпадении собственных колебаний с частотой внешнего воздействия (ЭДС), изменяющейся по синусоидальному закону, наблюдаются резкие всплески амплитуды, совпадающие по фазе с внешним источником сигнала.

При параллельном включении тех же элементов под воздействием внешней гармонической ЭДС проявляется явление «антирезонанса», состоящее в резком снижении амплитуды ЭДС.

Дополнительная информация. Этот эффект, получивший название параллельного (или резонанса токов), объясняется несовпадением фаз собственных и внешних колебаний ЭДС.

На резонансных частотах реактивные сопротивления каждой из параллельных ветвей выравниваются по величине, так что в них протекают примерно одинаковые по амплитуде токи (но они всегда не совпадают по фазе).

Вследствие этого общий для всей цепи токовый сигнал оказывается на порядок меньше. Указанные свойства прекрасно описывают поведение фильтрующих контуров и цепочек, в которых применение резонанса для электротехнических нужд выражено очень наглядно.

Сложные колебательные структуры

В системах с линейными характеристиками, характеризующихся использованием нескольких (двух в частном случае) контуров, резонансные явления возможны лишь при наличии связи между ними.

Для связанных контуров справедливы следующие правила:

  • Они сохраняют все основные свойства одноконтурных линейных структур;
  • В таких контурах возможны колебания на двух резонансных частотах, называемых нормальными;
  • Если принудительное воздействие по частоте не совпадает ни с одной из них, при плавном её изменении «отклик» в системе будет наступать последовательно на каждой;
  • В этом случае его график будет иметь вид слитного или двойного резонанса с тупой вершиной и двумя небольшими всплесками («горбами»);
  • Когда нормальные частоты не сильно отличаются одна от другой и близки к тому же параметру для внешней ЭДС, ответ системы будет иметь тот же вид, но два «горба» практически сольются в один;
  • Форма резонансной кривой в последнем случае будет иметь почти такой же вид, как и при одноконтурном линейном варианте.

В контурах с большим количеством степеней свободы в основном сохраняются те же реакции, что и в системах с двумя параметрами.

Нелинейные системы

Отклик систем, характеристики которых определяются текущим состоянием (их называют нелинейными), имеет более сложную форму и носит характер несимметричных проявлений. Последние зависят от соотношения характеристик сторонних воздействий и частот собственных вынужденных колебаний системы.

Обратите внимание! В этом случае они могут проявляться как дробные части частот, воздействующих на систему колебаний, или в виде кратных им величин.

Примером откликов, наблюдаемых в нелинейных системах, служат так называемые феррорезонансные явления. Они возможны в электрических цепях, в состав которых входит индуктивность с ферромагнитным сердечником, и относятся к разряду структурных.

Последнее объясняется особенностями состава вещества на атомистическом уровне, при исследовании которого обнаруживается, что ферромагнитные структуры представляют собой набор огромного числа элементарных магнитиков (спинов). Каждое из этих состояний при реакции на внешнюю «подкачку» определяется множеством различных факторов, то есть проявляется в технике как нелинейное.

В заключение следует резюмировать, что, независимо от вида исследуемой системы, суть резонансных явлений заключается в наблюдении откликов колебательных структур на прилагаемые к ним внешние воздействия. Тщательное изучение этих физических явлений позволяет получить практические результаты, способствующие внедрению в производство совершенно новых технологий.

Видео

Достигает наибольшего зна-чения, когда частота вынуждающей силы равна собственной час-тоте колебательной системы.

Отличительной особенностью вынужденных колебаний явля-ется зависимость их амплитуды от частоты изменения внешней силы . Для изучения этой зависимости можно воспользоваться установкой, изображенной на рисунке:

На кривошипе с ручкой укреплен пружинный маятник. При равномерном вращении руч-ки на груз через пружину передается действие периодически изменяющейся силы. Изменяясь с частотой, равной частоте враще-ния ручки, эта сила заставит груз совершать вынужденные колебания. Если вращать ручку кривошипа очень медленно, то груз вместе с пружиной будет перемещаться вверх и вниз так же, как и точка подвеса О . Амплитуда вынужденных колебаний при этом будет невелика. При более быстром вращении груз начнет колебаться сильнее, и при частоте вращения, равной собственной частоте пружинного маятника (ω = ω соб ), амплитуда его колебаний достигнет максимума. При дальнейшем увеличении частоты вра-щения ручки амплитуда вынужденных колебаний груза опять станет меньше. Очень быстрое вращение ручки оставит груз почти неподвижным: из-за своей инертности пружинный маятник, не успевая следовать изменениям внешней силы, будет просто дро-жать на месте.

Явление резонанса можно продемонстрировать и с нитяными маятниками. Подвесим на рейке массивный шар 1 и несколько ма-ятников, имеющих нити разной длины. Каждый из этих маятников имеет свою собственную частоту колебаний, которую можно определить, зная длину нити и ускорение свободного падения.

Теперь, не трогая легких маятников, выведем шар 1 из положения равновесия и отпустим. Качания массивного шара вызовут периодические колебания рейки, вследствие которых на каждый из легких маятников начнет действовать периодически изменяющаяся сила упругости. Частота ее изменений будет равна частоте колебаний шара. Под действием этой силы маятники начнут совершать вынужденные колебания. При этом маятники 2 и 3 останутся почти неподвижными. Маятники 4 и 5 будут колебаться с немного большей амплитудой. А у маятника б , имеющего такую же длину нити и, следовательно, собственную частоту колебаний, как у шара 1, амп-литуда окажется максимальной. Это и есть резонанс.

Резонанс возникает из-за того, что внешняя сила, действуя в такт со свободными колебаниями тела, все время совершает положительную работу. За счет этой работы энергия колеблющегося тела увеличивается, и амплитуда колебаний возрастает.

Резкое возрастание амплитуды вынужденных колебаний при ω = ω соб называется резонансом .

Изменение амплитуды колебаний в зависимости от частоты при одной и той же амплитуде внешней силы, но при различных коэффициентах трения и, изображено на рисунке ниже, где кривой 1 соответствует минималь-ное значение и, кривой 3 — максимальное.

Из рисунка видно, что о резонансе имеет смысл говорить, если зату-хание свободных колебаний в системе мало. Иначе амплитуда вынужден-ных колебаний при ω = ω 0 мало отличается от амплитуды колебаний при других частотах.

Явление резонанса в жизни и в технике.

Явление резонанса может играть как положительную, так и отрицательную роль.

Известно, например, что тяжелый «язык» большого колокола может раскачать даже ребенок, но при условии, что будет тянуть за веревку в такт со свободными колебаниями «языка».

На применении резонанса основано действие язычкового частотомера. Этот прибор представляет собой набор укрепленных па общем основании упругих пластин различной длины. Собствен-ная частота каждой пластины известна. При контакте частотомера с колебательной системой , частоту которой нужно определить, с наибольшей амплитудой начинает колебаться та пластина, частота которой совпадает с измеряемой частотой. Заметив, какая пластина вошла в резонанс, мы определим частоту колебаний системы.

С явлением резонанса можно встретиться и тогда, когда это совершенно нежелательно. Так, на-пример, в 1750 г. близ города Анжера во Франции через цепной мост длиной 102 м шел в ногу отряд солдат. Частота их шагов совпала с частотой свободных колебаний моста. Из-за этого размахи ко-лебаний моста резко увеличились (наступил резонанс), и цепи оборвались. Мост обрушился в реку.

В 1830 г. по той же причине обрушился подвесной мост около Манчестера в Англии, когда по нему маршировал военный отряд.

В 1906 г. из-за резонанса разрушился Египетский мост в Петербурге, по которому проходил кавалерийский эскадрон.

Теперь для предотвращения подобных случаев войсковым частям при переходе через мост приказывают «сбить ногу», идти не строевым, а вольным шагом.

Если же через мост проезжает поезд, то, чтобы избежать резонанса, он проходит его либо на медленном ходу, либо, наоборот, на максимальной скорости (чтобы частота ударов колес о стыки рельсов не оказалась равной собственной частоте моста).

Собственной частотой обладает и сам вагон (колеблющийся на своих рессорах). Когда частота ударов его колес на стыках рельсов оказывается ей равной, вагон начинает сильно раскачиваться.

Явление резонанса встречается не только на суше, но и в море, и даже в воздухе. Так, например, при некоторых частотах гребного вала в резонанс входили целые корабли. А на заре разви-тия авиации некоторые авиационные двигатели вызывали столь сильные резонансные колебания частей самолета, что он разваливался в воздухе.

Мы часто слышим слово резонанс: «общественный резонанс», «событие, вызвавшее резонанс», «резонансная частота». Вполне привычные и обыденные фразы. Но можете ли вы точно сказать, что такое резонанс?

Если ответ отскочил у вас от зубов, мы вами по-настоящему гордимся! Ну а если тема «резонанс в физике» вызывает вопросы, то советуем прочесть нашу статью, где мы подробно, понятно и кратко расскажем о таком явлении как резонанс.

Прежде, чем говорить о резонансе, нужно разобраться с тем, что такое колебания и их частота.

Колебания и частота

Колебания – процесс изменения состояний системы, повторяющийся во времени и происходящий вокруг точки равновесия.

Простейший пример колебаний - катание на качелях. Мы приводим его не зря, этот пример еще пригодится нам для понимания сути явления резонанса в дальнейшем.

Резонанс может наступить только там, где есть колебания. И не важно, какие это колебания – колебания электрического напряжения, звуковые колебания, или просто механические колебания.

На рисунке ниже опишем, какими могут быть колебания.


Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Колебания характеризуются амплитудой и частотой. Для уже упомянутых выше качелей амплитуда колебаний - это максимальная высота, на которую взлетают качели. Также мы можем раскачивать качели медленно или быстро. В зависимости от этого будет меняться частота колебаний.

Частота колебаний (измеряется в Герцах) - это количество колебаний в единицу времени. 1 Герц - это одно колебание за одну секунду.

Когда мы раскачиваем качели, периодически раскачивая систему с определенной силой (в данном случае качели – это колебательная система), она совершает вынужденные колебания. Увеличения амплитуды колебаний можно добиться, если воздействовать на эту систему определенным образом.

Толкая качели в определенный момент и с определенной периодичностью можно довольно сильно раскачать их, прилагая совсем немного усилий.Это и будет резонанс: частота наших воздействий совпадает с частотой колебаний качелей и амплитуда колебаний увеличивается.


Суть явления резонанса

Резонанс в физике – это частотно-избирательный отклик колебательной системы на периодическое внешнее воздействие, который проявляется в резком увеличении амплитуды стационарных колебаний при совпадении частоты внешнего воздействия с определёнными значениями, характерными для данной системы.

Суть явления резонанса в физике состоит в том, что амплитуда колебаний резко возрастает при совпадении частоты воздействия на систему с собственной частотой системы.

Известны случаи, когда мост, по которому маршировали солдаты, входил в резонанс от строевого шага, раскачивался и разрушался. Кстати, именно поэтому сейчас при переходе через мост солдатам положено идти вольным шагом, а не в ногу.

Примеры резонанса

Явление резонанса наблюдается в самых разных физических процессах. Например, звуковой резонанс. Возьмём гитару. Само по себе звучание струн гитары будет тихим и почти неслышным. Однако струны неспроста устанавливают над корпусом – резонатором. Попав внутрь корпуса, звук от колебаний струны усиливается, а тот, кто держит гитару, может почувствовать, как она начинает слегка «трястись», вибрировать от ударов по струнам. Иными словами, резонировать.

Еще один пример наблюдения резонанса, с которым мы сталкиваемся - круги на воде. Если кинуть в воду два камня, попутные волны от них встретятся и увеличатся.

Действие микроволновки также основано на резонансе. В данном случае резонанс происходит в молекулах воды, которые поглощают излучение СВЧ (2,450 ГГц). Как следствие, молекулы входят в резонанс, колеблются сильнее, а температура пищи повышается.


Резонанс может быть как полезным, так и приносящим вред явлением. А прочтение статьи, как и помощь нашего студенческого сервиса в трудных учебных ситуациях, принесет вам только пользу. Если в ходе выполнения курсовой вам понадобится разобраться с физикой магнитного резонанса, можете смело обращаться в нашу компанию за быстрой и квалифицированной помощью.

Напоследок предлагаем посмотреть видео на тему «резонанс» и убедиться в том, что наука может быть увлекательной и интересной. Наш сервис поможет с любой работой: от реферата "Сеть интернет и киберпреступность" до курсовой по физике колебаний или эссе по литературе.

Слово «резонанс» используется людьми каждый день в самых разных значениях. Его произносят политики и телеведущие, пишут в своих работах ученые и изучают на уроках школьники. У этого слова есть несколько значений, относящихся к разным областям человеческой деятельности.

Откуда взялось слово резонанс

Все мы узнаем, что такое резонанс впервые из курса школьной физики. В научных словарях этому термину дается подробное объяснение с точки зрения механики, электромагнитных излучений, оптики, акустики и астрофизики.

С технической точки зрения резонанс - это явление отклика колебательной системы не внешнее воздействие. При совпадении периодов воздействия и отклика системы возникает резонанс - резкое увеличение амплитуды рассматриваемых колебаний.

Простейший пример механического резонанса приводит в своих работах средневековый ученый Торичелли. Точное определение явления резонанса дано Галилео Галилеем в работе о маятниках и звучании музыкальных струн. Что такое электромагнитный резонанс, объяснил в 1808 году Джеймс Максвелл, основоположник современной электродинамики.

Узнать, что такое «резонанс» можно не только в Википедии, но в таких справочных изданиях:

  • учебники физики за 7-11 классы;
  • физическая энциклопедия;
  • научно-технический энциклопедический словарь;
  • словарь иностранных слов русского языка;
  • философская энциклопедия.

Резонанс в полемике и риторике

Еще одно значение слово «резонанс» приобрели в сфере общественных наук. Этим словом называют отклик общественности на некоторое явление в жизни людей, определенное высказывание, происшествие. Как правило, слово «резонанс» используют, когда нечто вызывает у многих людей одновременно схожую и очень яркую реакцию. Известно даже общеупотребимое выражение «широкий общественный резонанс», которое является речевым штампом. В собственной речи, письменной или устной, его лучше избегать.

В философском словаре резонанс трактуется как понятие, имеющее переносное значение и понимаемое как согласие или единомыслие двух людей, двух душ в сострадании, симпатии или антипатии, сочувствии или возмущении.

В значении «сильный отклик», «единодушная оценка» слово резонанс очень любят использовать политики, ораторы, дикторы. Оно помогает передать эмоциональный подъем, единодушный порыв, подчеркнуть значимость происходящего.

Где мы встречаемся с резонансом

В прямом смысле слово резонанс стоит употреблять в отношении множества естественных процессов, происходящих вокруг нас. Все дети, которые катаются на обычных качелях или каруселях на детской площадке, эксплуатируют механический резонанс.

Хозяйки, разогревая пищу в микроволновке, используют электромагнитный резонанс. На принципах резонанса построена теле- и радиовещательная сеть, работа мобильных телефонов и wifi для интернета.

Звуковой резонанс позволяет нам наслаждаться музыкой или баловаться эхом в горах и закрытых помещениях, где стены не имеют достаточной звукоизоляции. На принципе акустического резонанса построена работа эхолотов и многих других измерительных приборов.

Чем опасен резонанс

В естественно-научном смысле резонанс как явление может быть не только полезен человеку, но и опасен. Самый яркий пример — строительство.

При конструировании зданий и сооружений расчеты конструкций на резонанс строго необходимы. Так просчитываются все высотные сооружения, башни, опоры ЛЭП, передающие и принимающие антенны, а также высотные здания, которые входят в резонанс с ветрами на большой высоте.

На резонанс обязательно проверяются все мосты и протяженные объекты. В 2010 году весь интернет облетело видео моста через Волгу, который пошел волной как шелковая лента. Результаты расследования показали, что конструкции моста вошли в резонанс с ветром.

Аналогичный случай произошел в США. 7 ноября 1940 года разрушился один из пролетов висячего Такомского моста, расположенного в штате Вашингтон. Еще при строительстве специалисты отмечали колебания полотна моста, связанные с ветром и низкой высотой опор. В результате обрушения были проведены многочисленные исследования и расчеты, ставшие основой для технологий современного мостостроения. В среде специалистов возник даже термин «Такомский мост», означающий ненадлежащее качество строительных расчетов.

С резонансом каждый из нас сталкивается ежедневно. Об этом явлении необходимо помнить в повседневной жизни, вздумав раскачаться на пешеходном мосту или отправляя металлическую посуду в микроволновку (это запрещено правилами). А само слово «резонанс» можно использовать в своей речи для ее украшения и усиления впечатления от сказанного вами.

Поделитесь с друзьями или сохраните для себя:

Загрузка...