Макс планк краткая биография. Нобелевские лауреаты: Макс Планк. Самый постоянный из физиков Макс планк личная жизнь


Немецкий физик Макс Карл Эрнст Людвиг Планк родился в г. Киле (принадлежавшем тогда Пруссии), в семье профессора гражданского права Иоганна Юлиуса Вильгельма фон Планка, профессора гражданского права, и Эммы (в девичестве Патциг) Планк. В детстве мальчик учился играть на фортепьяно и органе, обнаруживая незаурядные музыкальные способности. В 1867 г. семья переехала в Мюнхен, и там П. поступил в Королевскую Максимилиановскую классическую гимназию, где превосходный преподаватель математики впервые пробудил в нем интерес к естественным и точным наукам. По окончании гимназии в 1874 г. он собирался было изучать классическую филологию, пробовал свои силы в музыкальной композиции, но потом отдал предпочтение физике.

В течение трех лет П. изучал математику и физику в Мюнхенском и год – в Берлинском университетах. Один из его профессоров в Мюнхене, физик-экспериментатор Филипп фон Жолли, оказался плохим пророком, когда посоветовал молодому П. избрать другую профессию, так как, по его словам, в физике не осталось ничего принципиально нового, что можно было бы открыть. Эта точка зрения, широко распространенная в то время, возникла под влиянием необычайных успехов, которых ученые в XIX в. достигли в приумножении наших знаний о физических и химических процессах.

В бытность свою в Берлине П. приобрел более широкий взгляд на физику благодаря публикациям выдающихся физиков Германа фон Гельмгольца и Густава Кирхгофа, а также статьям Рудольфа Клаузиуса. Знакомство с их трудами способствовало тому, что научные интересы П. надолго сосредоточивались на термодинамике – области физики, в которой на основе небольшого числа фундаментальных законов изучаются явления теплоты, механической энергии и преобразования энергии. Ученую степень доктора П. получил в 1879 г., защитив в Мюнхенском университете диссертацию о втором начале термодинамики, утверждающем, что ни один непрерывный самоподдерживающийся процесс не может переносить тепло от более холодного тела к более теплому.

На следующий год П. написал еще одну работу по термодинамике, которая принесла ему должность младшего ассистента физического факультета Мюнхенского университета. В 1885 г. он стал адъюнкт-профессором Кильского университета, что упрочило его независимость, укрепило финансовое положение и предоставило больше времени для научных исследований. Работы П. по термодинамике и ее приложениям к физической химии и электрохимии снискали ему международное признание. В 1888 г. он стал адъюнкт-профессором Берлинского университета и директором Института теоретической физики (пост директора был создан специально для него). Полным (действительным) профессором он стал в 1892 г.

С 1896 г. П. заинтересовался измерениями, производившимися в Государственном физико-техническом институте в Берлине, а также проблемами теплового излучения тел. Любое тело, содержащее тепло, испускает электромагнитное излучение. Если тело достаточно горячее, то это излучение становится видимым. При повышении температуры тело сначала раскаляется докрасна, затем становится оранжево-желтым и, наконец, белым. Излучение испускает смесь частот (в видимом диапазоне частота излучения соответствует цвету). Однако излучение тела зависит не только от температуры, но и до некоторой степени от таких характеристик поверхности, как цвет и структура.

В качестве идеального эталона для измерения и теоретических исследований физики приняли воображаемое абсолютное черное тело. По определению, абсолютно черным называется тело, которое поглощает все падающее на него излучение и ничего не отражает. Излучение, испускаемое абсолютно черным телом, зависит только от его температуры. Хотя такого идеального тела не существует, неким приближением к нему может служить замкнутая оболочка с небольшим отверстием (например, надлежащим образом сконструированная печь, стенки и содержимое которой находятся в равновесии при одной и той же температуре).

Одно из доказательств чернотельных характеристик такой оболочки сводится к следующему. Излучение, падающее на отверстие, попадает в полость и, отражаясь от стенок, частично отражается и частично поглощается. Поскольку вероятность того, что излучение в результате многочисленных отражений выйдет через отверстие наружу, очень мала, оно практически полностью поглощается. Излучение, берущее начало в полости и выходящее из отверстия, принято считать эквивалентным излучению, испускаемому площадкой размером с отверстие на поверхности абсолютно черного тела при температуре полости и оболочки. Подготавливая собственные исследования, П. прочитал работу Кирхгофа о свойствах такой оболочки с отверстием. Точное количественное описание наблюдаемого распределения энергии излучения в этом случае получило название проблемы черного тела.

Как показали эксперименты с черным телом, график зависимости энергии (яркости) от частоты или длины волны является характеристической кривой. При низких частотах (больших длинах волн) она прижимается к оси частот, затем на некоторой промежуточной частоте достигает максимума (пик с округлой вершиной), а затем при более высоких частотах (коротких длинах волн) спадает. При повышении температуры кривая сохраняет свою форму, но сдвигается в сторону более высоких частот. Были установлены эмпирические соотношения между температурой и частотой пика на кривой излучения черного тела (закон смещения Вина, названный так в честь Вильгельма Вина) и между температурой и всей излученной энергией (закон Стефана – Больцмана, названный так в честь австрийских физиков Йозефа Стефана и Людвига Больцмана), но никому не удавалось вывести кривую излучения черного тела из основных принципов, известных в то время.

Вину удалось получить полуэмпирическую формулу, которую можно подогнать так, что она хорошо описывает кривую при высоких частотах, но неверно передает ее ход при низких частотах. Дж. У. Стретт (лорд Рэлей) и английский физик Джеймс Джинс применили принцип равного распределения энергии по частотам колебаний осцилляторов, заключенных в пространстве черного тела, и пришли к другой формуле (формуле Рэлея – Джинса). Она хорошо воспроизводила кривую излучения черного тела при низких частотах, но расходилась с ней на высоких частотах.

П. под влиянием теории электромагнитной природы света Джеймса Клерка Максвелла (опубликованной в 1873 г. и подтвержденной экспериментально Генрихом Герцем в 1887 г.) подошел к проблеме черного тела с точки зрения распределения энергии между элементарными электрическими осцилляторами, физическая форма которых никак не конкретизируется. Хотя на первый взгляд может показаться, что выбранный им метод напоминает вывод Рэлея – Джинса, П. отверг некоторые из принятых этими учеными допущений.

В 1900 г., после продолжительных и настойчивых попыток создать теорию, которая удовлетворительно объясняла бы экспериментальные данные, П. удалось вывести формулу, которая, как обнаружили физики-экспериментаторы из Государственного физико-технического института, согласовывалась с результатами измерений с замечательной точностью. Законы Вина и Стефана – Больцмана также следовали из формулы Планка. Однако для вывода своей формулы ему пришлось ввести радикальное понятие, идущее вразрез со всеми установленными принципами. Энергия планковских осцилляторов изменяется не непрерывно, как следовало бы из традиционной физики, а может принимать только дискретные значения, увеличивающиеся (или уменьшающиеся) конечными шагами. Каждый шаг по энергии равен некоторой постоянной (называемой ныне постоянной Планка), умноженной на частоту. Дискретные порции энергии впоследствии получили название квантов. Введенная П. гипотеза ознаменовала рождение квантовой теории, совершившей подлинную революцию в физике. Классическая физика в противоположность современной физике ныне означает «физика до Планка».

П. отнюдь не был революционером, и ни он сам, ни другие физики не сознавали глубокого значения понятия «квант». Для П. квант был всего лишь средством, позволившим вывести формулу, дающую удовлетворительное согласие с кривой излучения абсолютно черного тела. Он неоднократно пытался достичь согласия в рамках классической традиции, но безуспешно. Вместе с тем он с удовольствием отметил первые успехи квантовой теории, последовавшие почти незамедлительно. Его новая теория включала в себя, помимо постоянной Планка, и другие фундаментальные величины, такие, как скорость света и число, известное под названием постоянной Больцмана. В 1901 г., опираясь на экспериментальные данные по излучению черного тела, П. вычислил значение постоянной Больцмана и, используя другую известную информацию, получил число Авогадро (число атомов в одном моле элемента). Исходя из числа Авогадро, П. сумел с замечательной точностью найти электрический заряд электрона.

Позиции квантовой теории укрепились в 1905 г., когда Альберт Эйнштейн воспользовался понятием фотона – кванта электромагнитного излучения – для объяснения фотоэлектрического эффекта (испускание электронов поверхностью металла, освещаемой ультрафиолетовым излучением). Эйнштейн предположил, что свет обладает двойственной природой: он может вести себя и как волна (в чем нас убеждает вся предыдущая физика), и как частица (о чем свидетельствует фотоэлектрический эффект). В 1907 г. Эйнштейн еще более упрочил положение квантовой теории, воспользовавшись понятием кванта для объяснения загадочных расхождений между предсказаниями теории и экспериментальными измерениями удельной теплоемкости тел – количества тепла, необходимого для того, чтобы поднять на один градус температуру одной единицы массы твердого тела.

Еще одно подтверждение потенциальной мощи введенной П. новации поступило в 1913 г. от Нильса Бора, применившего квантовую теорию к строению атома. В модели Бора электроны в атоме могли находиться только на определенных энергетических уровнях, определяемых квантовыми ограничениями. Переход электронов с одного уровня на другой сопровождается выделением разности энергий в виде фотона излучения с частотой, равной энергии фотона, деленной на постоянную Планка. Тем самым получали квантовое объяснение характеристические спектры излучения, испускаемого возбужденными атомами.

В 1919 г. П. был удостоен Нобелевской премии по физике за 1918 г. «в знак признания его заслуг в деле развития физики благодаря открытию квантов энергии». Как заявил А.Г. Экстранд, член Шведской королевской академии наук, на церемонии вручения премии, «теория излучения П. – самая яркая из путеводных звезд современного физического исследования, и пройдет, насколько можно судить, еще немало времени, прежде чем иссякнут сокровища, которые были добыты его гением». В Нобелевской лекции, прочитанной в 1920 г., П. подвел итог своей работы и признал, что «введение кванта еще не привело к созданию подлинной квантовой теории».

20-е гг. стали свидетелями развития Эрвином Шредингером, Вернером Гейзенбергом, П.А.М. Дираком и другими квантовой механики – оснащенной сложным математическим аппаратом квантовой теории. П. пришлась не по душе новая вероятностная интерпретация квантовой механики, и, подобно Эйнштейну, он пытался примирить предсказания, основанные только на принципе вероятности, с классическими идеями причинности. Его чаяниям не суждено было сбыться: вероятностный подход устоял.

Вклад П. в современную физику не исчерпывается открытием кванта и постоянной, носящей ныне его имя. Сильное впечатление на него произвела специальная теория относительности Эйнштейна, опубликованная в 1905 г. Полная поддержка, оказанная П. новой теории, в немалой мере способствовала принятию специальной теории относительности физиками. К числу других его достижений относится предложенный им вывод уравнения Фоккера – Планка, описывающего поведение системы частиц под действием небольших случайных импульсов (Адриан Фоккер – нидерландский физик, усовершенствовавший метод, впервые использованный Эйнштейном для описания броуновского движения – хаотического зигзагообразного движения мельчайших частиц, взвешенных в жидкости). В 1928 г. в возрасте семидесяти лет Планк вышел в обязательную формальную отставку, но не порвал связей с Обществом фундаментальных наук кайзера Вильгельма, президентом которого он стал в 1930 г. И на пороге восьмого десятилетия он продолжал исследовательскую деятельность.

Личная жизнь П. была отмечена трагедией. Его первая жена, урожденная Мария Мерк, с которой он вступил в брак в 1885 г. и которая родила ему двух сыновей и двух дочерей-близнецов, умерла в 1909 г. Двумя годами позже он женился на своей племяннице Марге фон Хесслин, от которой у него также родился сын. Старший сын П. погиб в первую мировую войну, а в последующие годы обе его дочери умерли при родах. Второй сын от первого брака был казнен в 1944 г. за участие в неудавшемся заговоре против Гитлера.

Как человек сложившихся взглядов и религиозных убеждений, да и просто как справедливый человек, П. после прихода в 1933 г. Гитлера к власти публично выступал в защиту еврейских ученых, изгнанных со своих постов и вынужденных эмигрировать. На научной конференции он приветствовал Эйнштейна, преданного анафеме нацистами. Когда П. как президент Общества фундаментальных наук кайзера Вильгельма наносил официальный визит Гитлеру, он воспользовался этим случаем, чтобы попытаться прекратить преследования ученых-евреев. В ответ Гитлер разразился тирадой против евреев вообще. В дальнейшем П. стал более сдержанным и хранил молчание, хотя нацисты, несомненно, знали о его взглядах.

Как патриот, любящий родину, он мог только молиться о том, чтобы германская нация вновь обрела нормальную жизнь. Он продолжал служить в различных германских ученых обществах в надежде сохранить хоть какую-то малость немецкой науки и просвещения от полного уничтожения. После того как его дом и личная библиотека погибли во время воздушного налета на Берлин, П. и его жена пытались найти убежище в имении Рогец неподалеку от Магдебурга, где оказались между отступающими немецкими войсками и наступающими силами союзных войск. В конце концов супруги Планк были обнаружены американскими частями и доставлены в безопасный тогда Геттинген.

Скончался П. в Геттингене 4 октября 1947 г., за шесть месяцев до своего 90-летия. На его могильной плите выбиты только имя и фамилия и численное значение постоянной Планка.

Подобно Бору и Эйнштейну, П. глубоко интересовался философскими проблемами, связанными с причинностью, этикой и свободой воли, и выступал на эти темы в печати и перед профессиональными и непрофессиональными аудиториями. Исполнявший обязанности пастора (но не имевший священнического сана) в Берлине, П. был глубоко убежден в том, что наука дополняет религию и учит правдивости и уважительности.

Через всю свою жизнь П. пронес любовь к музыке, вспыхнувшую в нем еще в раннем детстве. Великолепный пианист, он часто играл камерные произведения со своим другом Эйнштейном, пока тот не покинул Германию. П. был также увлеченным альпинистом и почти каждый свой отпуск проводил в Альпах.

Кроме Нобелевской премии, П. был удостоен медали Копли Лондонского королевского общества (1928) и премии Гете г. Франкфурта-на-Майне (1946). Германское физическое общество назвал в честь него свою высшую награду медалью Планка, и сам П. был первым обладателем этой почетной награды. В честь его 80-летия одна из малых планет была названа Планкианой, а после окончания второй мировой войны Общество фундаментальных наук кайзера Вильгельма было переименовано в Общество Макса Планка. П. состоял членом Германской и Австрийской академий наук, а также научных обществ и академий Англии, Дании, Ирландии, Финляндии, Греции, Нидерландов, Венгрии, Италии, Советского Союза, Швеции, Украины и Соединенных Штатов.

ПЛАНК, МАКС (Planck, Max) (1858–1947), немецкий физик-теоретик, основоположник квантовой теории. Родился 23 апреля 1858 в Киле. Учился в Мюнхенском и Берлинском университетах, в последнем прослушал курс лекций физиков Гельмгольца и Кирхгофа и математика Вейерштрасса. А это же время тщательно проработал труды по термодинамике Клаузиуса, во многом определившие направление исследований Планка в эти годы. В 1879 стал доктором философии, представив к защите диссертацию О втором законе механической теплоты . В своей диссертационной работе рассмотрел вопрос о необратимости процесса теплопроводности и дал первую общую формулировку закона возрастания энтропии. Через год после защиты получил право на преподавание теоретической физики и пять лет читал этот курс в Мюнхенском университете. В 1885 стал профессором теоретической физики Кильского университета. Самой значительной его публикацией в этот период стала книга Принцип сохранения энергии , получившая премию на конкурсе философского факультета Гёттингенского университета. В 1889 Планк был приглашен в Берлинский университет на должность экстраординарного профессора, через три года был назначен ординарным профессором. В первые годы пребывания в Берлине занимался вопросами теории теплоты, электро- и термохимией, равновесием в газах и разбавленных растворах.

В 1896 Планк начал свои классические исследования в области теплового излучения. Занявшись решением задачи о распределении энергии в спектре излучения абсолютно черного тела, он в 1900 вывел полуэмпирическую формулу, которая при высоких температурах и больших длинах волн удовлетворительно описывала экспериментальные данные Курлбаума и Рубенса, а при коротких волнах и низких температурах переходила в закон Вина. В процессе теоретического обоснования своей формулы Планк пришел к ошеломляющему выводу: он обнаружил, что уравнение справедливо только при одном совершенно новом представлении, а именно: при излучении энергия испускается или поглощается не непрерывно и не в любых количествах, а лишь неделимыми порциями – «квантами». При этом энергия кванта пропорциональна частоте колебания и новой фундаментальной постоянной, имеющей размерность действия. Сейчас эту фундаментальную константу называют постоянной Планка. День 14 декабря 1900, когда Планк доложил в Немецком физическом обществе о теоретическом выводе закона излучения, стал датой рождения квантовой теории и новой эры в естествознании. Впрочем, теория, предложенная Планком как обоснование выведенной им формулы, не привлекала внимания ученых вплоть до 1905, когда революционную идею квантов использовал А.Эйнштейн, распространив ее на сам процесс излучения и предсказав существование фотона. В 1918 Планк был удостоен за свою теорию Нобелевской премии по физике. Сам же ученый на закате жизни признал, что много лет подряд пытался «как-нибудь встроить квант действия в систему классической физики», однако это ему не удалось.

Большое значение имели работы Планка по теории относительности. В 1906 он вывел уравнения релятивистской динамики, получив выражения для энергии и импульса электрона.

В 1926 Планк оставил свой пост в Берлинском университете (где его преемником стал Э.Шрёдингер), но продолжал активно участвовать в его научной жизни, а также читал публичные лекции по физике. В 1912–1938 он был непременным секретарем Берлинской АН, долгое время был президентом Общества кайзера Вильгельма (с 1948 – Общество Макса Планка). Будучи обязанным по должности засвидетельствовать свое почтение Гитлеру, имел в 1933 беседу с ним, которую пытался использовать для того, чтобы предотвратить массовое увольнение ученых-евреев.

Во время Второй мировой войны Планк перенес немало лишений. Последние годы его жизни были омрачены гибелью сына, казненного за участие в покушении на Гитлера 20 июля 1944. Умер Планк в Гёттингене 4 октября 1947.

Среди многочисленных трудов ученого – Лекции по теории теплового излучения (Vorlesungen über die Theorie der Warmestrahlung , 1906), Введение в теоретическую физику (Einführung in die theoretische Physik , Bd. 1–5, 1916–1930), Пути физического познания (Wege zur physikalischen Erkenntnis , 1933).


Макс Планк
(1858-1947).

Немецкий физик Макс Карл Эрнст Людвиг Планк родился 23 апреля 1858 года в прусском городе Киле, в семье профессора гражданского права Иоганна Юлиуса Вильгельма фон Планка, профессора гражданского права, и Эммы (в девичестве Патциг) Планк. В детстве мальчик учился играть на фортепиано и органе, обнаруживая незаурядные музыкальные способности. В 1867 году семья переехала в Мюнхен, и там Планк поступил в Королевскую Максимилиановскую классическую гимназию, где превосходный преподаватель математики впервые пробудил в нем интерес к естественным и точным наукам. По окончании гимназии в 1874 году он поначалу собирался изучать классическую филологию, пробовал свои силы в музыкальной композиции, но потом отдал предпочтение физике.

В течение трех лет Планк изучал математику и физику в Мюнхенском и год в Берлинском университетах. Один из его профессоров в Мюнхене, физик-экспериментатор Филипп фон Жолли, оказался плохим пророком, когда посоветовал молодому Планку избрать другую профессию, так как, по его словам, в физике не осталось ничего принципиально нового, что можно было бы открыть. Эта точка зрения, широко распространенная в то время, возникла под влиянием необычайных успехов, которых ученые в XIX веке достигли в приумножении наших знаний о физических и химических процессах.

В бытность свою в Берлине Планк приобрел более широкий взгляд на физику благодаря публикациям выдающихся физиков Германа фон Гельмгольца и Густава Кирхгофа, а также статьям Рудольфа Клаузиуса. Знакомство с их трудами способствовало тому, что научные интересы Планка надолго сосредоточивались на термодинамике - области физики, в которой на основе небольшого числа фундаментальных законов изучаются явления теплоты, механической энергии и преобразования энергии.

Ученую степень доктора Планк получил в 1879 году, защитив в Мюнхенском университете диссертацию "О втором законе механической теории тепла" - втором начале термодинамики, утверждающем, что ни один непрерывный самоподдерживающийся процесс не может переносить тепло от более холодного тела к более теплому. Через год он защитил диссертацию "Равновесное состояние изотропных тел при различных температурах", которая принесла ему должность младшего ассистента физического факультета Мюнхенского университета.

В 1885 году он стал адъюнкт-профессором Кильского университета, что упрочило его независимость, укрепило финансовое положение и предоставило больше времени для научных исследований. Работы Планка по термодинамике и ее приложениям к физической химии и электрохимии снискали ему международное признание. В 1888 году он стал адъюнкт-профессором Берлинского университета и директором Института теоретической физики (пост директора был создан специально для него).

Работая доцентом Мюнхенского университета, Планк начал составлять курс лекций по теоретической физике. Но до 1897 года он не мог приступить к публикации своих лекций. В 1887 году он написал конкурсное сочинение на премию философского факультета Геттингенского университета. За это сочинение Планк получил премию, а сама работа, содержащая историко-методологический анализ закона сохранения энергии, переиздавалась пять раз, с 1887 по 1924 год. За это же время Планк опубликовал ряд работ по термодинамике физико-химических процессов. Особую известность получила созданная им теория химического равновесия разведенных растворов. В 1897 году вышло первое издание его лекций по термодинамике. Эта классическая книга переиздавалась несколько раз (последнее издание вышло в 1922 году) и переводилась на иностранные языки, в том числе и на русский. К тому времени Планк был уже ординарным профессором Берлинского университета и членом Прусской академии наук.

С 1896 года Планк заинтересовался измерениями, производившимися в Государственном физико-техническом институте в Берлине, а также проблемами теплового излучения тел. Проводя свои исследования, Планк обратил внимание на новые физические закономерности. Он установил на основе эксперимента закон теплового излучения нагретого тела. При этом он столкнулся с тем, что излучение имеет прерывный характер. Планк смог обосновать свой закон лишь с помощью замечательного предположения, что энергия колебания атомов не произвольная, а может принимать лишь ряд вполне определенных значений. Позднейшие исследования целиком подтвердили это предположение. Оказалось, что прерывность присуща любому излучению, что свет состоит из отдельных порций (квантов) энергии.

Планк установил, что свет с частотой колебания должен испускаться и поглощаться порциями, причем энергия каждой такой порции равна частоте колебания умноженной на специальную константу, получившую название постоянной Планка.

14 декабря 1900 года Планк доложил Берлинскому физическому обществу о своей гипотезе и новой формуле излучения. Введенная Планком гипотеза ознаменовала рождение квантовой теории, совершившей подлинную революцию в физике. Классическая физика в противоположность современной физике ныне означает "физика до Планка".

В 1906 году вышла монография Планка "Лекции по теории теплового излучения". Она переиздавалась несколько раз. Русский перевод книги под названием "Теория теплового излучения" вышел в 1935 году.

Его новая теория включала в себя, помимо постоянной Планка, и другие фундаментальные величины, такие как скорость света и число, известное под названием постоянной Больцмана. В 1901 году, опираясь на экспериментальные данные по излучению черного тела, Планк вычислил значение постоянной Больцмана и, используя другую известную информацию, получил число Авогадро (число атомов в одном моле элемента). Исходя из числа Авогадро, Планк сумел с высочайшей точностью найти электрический заряд электрона.

Планк отнюдь не был революционером, и ни он сам, ни другие физики не сознавали глубокого значения понятия "квант". Для Планка квант был всего лишь средством, позволившим вывести формулу, дающую удовлетворительное согласие с кривой излучения абсолютно черного тела. Он неоднократно пытался достичь согласия в рамках классической традиции, но безуспешно. Вместе с тем он с удовольствием отметил первые успехи квантовой теории, последовавшие почти незамедлительно.

Позиции квантовой теории укрепились в 1905 году, когда Альберт Эйнштейн воспользовался понятием фотона - кванта электромагнитного излучения. Эйнштейн предположил, что свет обладает двойственной природой: он может вести себя и как волна, и как частица. В 1907 году Эйнштейн еще более упрочил положение квантовой теории, воспользовавшись понятием кванта для объяснения загадочных расхождений между предсказаниями теории и экспериментальными измерениями удельной теплоемкости тел. Еще одно подтверждение потенциальной мощи введенной Планком новации поступило в 1913 году от Нильса Бора, применившего квантовую теорию к строению атома.

В тоже время личная жизнь Планка была отмечена трагедией. Его первая жена, урожденная Мария Мерк, с которой он вступил в брак в 1885 году и которая родила ему двух сыновей и двух дочерей-близнецов, умерла в 1909 году. Двумя годами позже он женился на своей племяннице Марге фон Хесслин, от которой у него также родился сын. Во время Первой мировой войны погиб под Верденом один из его сыновей, а в последующие годы обе его дочери умерли при родах.

В 1919 году Планк был удостоен Нобелевской премии по физике за 1918 год "в знак признания его заслуг в деле развития физики благодаря открытию квантов энергии". Как заявил А. Г. Экстранд, член Шведской королевской академии наук, на церемонии вручения премии, "теория излучения Планка - самая яркая из путеводных звезд современного физического исследования, и пройдет, насколько можно судить, еще немало времени, прежде чем иссякнут сокровища, которые были добыты его гением". В нобелевской лекции, прочитанной в 1920 году, Планк подвел итог своей работы и признал, что "введение кванта еще не привело к созданию подлинной квантовой теории".

В двадцатые годы Шредингер, Гейзенберг, Дирак и другие развили квантовую механику. Планку пришлась не по душе новая вероятностная интерпретация квантовой механики, и, подобно Эйнштейну, он пытался примирить предсказания, основанные только на принципе вероятности, с классическими идеями причинности. Его чаяниям не суждено было сбыться: вероятностный подход устоял.

Вклад Планка в современную физику не исчерпывается открытием кванта и постоянной, носящей ныне его имя. Сильное впечатление на него произвела специальная теория относительности Эйнштейна, опубликованная в 1905 году. Полная поддержка, оказанная Планком новой теории, в немалой мере способствовала принятию специальной теории относительности физиками. К числу других его достижений относится предложенный им вывод уравнения Фоккера-Планка, описывающего поведение системы частиц под действием небольших случайных импульсов.

В 1928 году в возрасте семидесяти лет Планк вышел в обязательную формальную отставку, но не порвал связей с Обществом фундаментальных наук кайзера Вильгельма, президентом которого он стал в 1930 году. И на пороге восьмого десятилетия он продолжал исследовательскую деятельность.

Как человек сложившихся взглядов и религиозных убеждений, да и просто как справедливый человек, Планк после прихода в 1933 году Гитлера к власти публично выступал в защиту еврейских ученых, изгнанных со своих постов и вынужденных эмигрировать. На научной конференции он приветствовал Эйнштейна, преданного анафеме нацистами. Когда Планк как президент Общества фундаментальных наук кайзера Вильгельма наносил официальный визит Гитлеру, он воспользовался этим случаем, чтобы попытаться прекратить преследования ученых-евреев. В ответ Гитлер разразился тирадой против евреев вообще. В дальнейшем Планк стал более сдержанным и хранил молчание, хотя нацисты, несомненно, знали о его взглядах. Как патриот, любящий родину, он мог только молиться о том, чтобы германская нация вновь обрела нормальную жизнь. Он продолжал служить в различных германских ученых обществах в надежде сохранить хоть какую-то малость немецкой науки и просвещения от полного уничтожения.

Планка ждало новое потрясение. Второй сын от первого брака был казнен в 1944 году за участие в неудавшемся заговоре против Гитлера. После того как его дом и личная библиотека погибли во время воздушного налета на Берлин, Планк и его жена пытались найти убежище в имении Рогец неподалеку от Магдебурга, где оказались между отступающими немецкими войсками и наступающими силами союзных войск. В конце концов, супруги Планк были обнаружены американскими частями и доставлены в безопасный тогда Геттинген.

Планк глубоко интересовался философскими проблемами, связанными с причинностью, этикой и свободой воли, и выступал на эти темы в печати и перед профессиональными и непрофессиональными аудиториями. Исполнявший обязанности пастора (но не имевший священнического сана) в Берлине, Планк был глубоко убежден в том, что наука дополняет религию и учит правдивости и уважительности.

Планк верил в реальности внешнего мира и в могущество разума. Это существенно отметить, потому что очень важный этап его деятельности протекал в обстановке кризиса в физике. Однако материалистически настроенный Планк твердо противостоял модным позитивистским увлечениям Маха и Оствальда. "Он был типичным немцем в лучшем смысле этого слова, - пишет в своей книге Джордж Паджет Томсон, видный физик, сын Дж. Дж. Томсона. - Честный, педантичный, с чувством собственного достоинства, по-видимому, довольно твердый, но в благоприятных условиях способный отбросить всю чопорность и превратиться в обаятельного человека".

Через всю свою жизнь Планк пронес любовь к музыке: великолепный пианист, он часто играл камерные произведения со своим другом Эйнштейном, пока тот не покинул Германию. Планк был также увлеченным альпинистом и почти каждый свой отпуск проводил в Альпах.

Планк состоял членом Германской и Австрийской академий наук, а также научных обществ и академий Англии, Дании, Ирландии, Финляндии, Греции, Нидерландов, Венгрии, Италии, Советского Союза, Швеции и Соединенных Штатов. Германское физическое общество назвало в честь него свою высшую награду медалью Планка, и сам ученый стал первым обладателем этой почетной награды. В честь его восьмидесятилетия одна из малых планет была названа Планкианой, а после окончания Второй мировой войны Общество фундаментальных наук кайзера Вильгельма было переименовано в Общество Макса Планка.

Скончался Планк в Геттингене 4 октября 1947 года, за шесть месяцев до своего девяностолетия. На его могильной плите выбиты только имя и фамилия и численное значение постоянной Планка.

Макс Планк краткая биография немецкого физика изложена в этой статье.

Макс Планк краткая биография

Макс Карл Эрнст Людвиг Планк родился в 23 апреля 1858 году в городке Килев. Его отец был профессором гражданского права. С самых малых лет мальчик начал проявлять незаурядные музыкальные способности, обучаясь игре на фортепиано и органе.

В 1867 году его семья переехала жить в Мюнхен. Здесь Макс Планк поступает в Королевскую классическую гимназию, где у него появляется интерес к естественным и точным наукам.

В 1874 году перед Планком встал выбор — продолжать музыкальное обучение или заниматься физикой. Он отдал предпочтение последнему. Макс стал изучать физику и математику в Берлинском и Мюнхенском университетах, углубляя свои знания по квантовой теории, термодинамике, теории вероятности, теории теплоизлучения, истории и методологии физики.

В 1900 году молодой ученый сформулировал закон распределения энергии в спектре абсолютно черного тела, вводя постоянную с функциональной размерностью. Формула Макса Планка сразу же получила экспериментальное подтверждение. Это был фурор в науке. Он создал так называемую постоянную Планка или квант действия – это одна из универсальных постоянных в физике. И дата 14 декабря 1900 года, день когда Макс Планк представил доклад в Немецком физическом обществе о теоретических основах закона излучения, стала датой рождения новой квантовой теории.

Также огромное значение имели исследования Планка касательно теории вероятности. Немецкий ученый один из первых понял ее и настойчиво поддержал. На этом его научные достижения продолжаются – в 1906 году Макс Планк вывел уравнение по релятивистской динамике, получив в ходе своих исследований формулы для определения импульса и энергии электрона. Таким образом, ученым было завершено релятивизацияю классической механики.

В 1919 году Макс Планк стал Лауреатом Нобелевской премии в области физики за 1918 год. В списке его достижений значилось следующее — « как знак весомости его заслуг в развитии физики благодаря открытию квантов энергии».

Не смотря на большие достижения в науке, личная жизнь Планка сложилась весьма трагически. Первая его жена умерла рано, оставив ему 4 детей — двух дочерей и двух сыновей. Он енился второй раз и в браке родился пятый ребенок ученого – мальчик. Его старший сын погиб во времена Первой мировой войны, две дочки умерли во время родов. Его второй сын был казнен за участие в покушении на фюрера Гитлера.

Умер Макс Планк в городе Геттинген 4 октября 1947 года, не дожив до своего 90-летия всего полгода.

Основоположником квантовой физики считается немецкий физик-теоретик Макс Карл Эрнст Людвиг Планк. Именно он в 1900 г. заложил основы квантовой теории, предположив, что при тепловом излучении энергия испускается и поглощается отдельными порциями – квантами.

Позже было доказано, что любому излучению присуща прерывность.

Из биографии

Родился Макс Планк 23 апреля 1858 г. в г. Киле. Его отец, Иоганн Юлиус Вильгельм фон Планк, был профессором права. В 1867 г. Макс Планк начал обучаться в Королевской Максимилиановской гимназии в Мюнхене, куда к тому времени переехала его семья. В 1874 г.Планк закончил гимназию и занялся изучением математики и физики в Мюнхенском и Берлинском университетах. Планку был всего 21 год, когда в 1879 г. он защитил свою диссертацию «О втором законе механической теории тепла», посвящённую второму началу термодинамики. Через год он защищает вторую диссертацию «Равновесное состояние изотропных тел при различных температурах» и становится приват-доцентом факультета физики в Мюнхенском университете.

Весной 1885 г. Макс Планк – экстраординарный профессор кафедры теоретической физики Кильского университета. В 1897 г. был издан курс лекций Планка по термодинамике.

В январе 1889 г. Планк приступил к выполнению обязанностей экстраординарного профессора кафедры теоретической физики Берлинского университета, а в 1982 г. он стал ординарным профессором. Одновременно он возглавил Институт теоретической физики.

В 1913/14 учебном году Планк занимал пост ректора Берлинского университета.

Квантовая теория Планка

Берлинский период стал наиболее плодотворным в научной карьере Планка. Занимаясь проблемой теплового излучения с 1890 г., в 1900 г. Планк предположил, что электромагнитное излучение не является непрерывным. Оно излучается отдельными порциями – квантами. А величина кванта зависит от частоты излучения. Планком была выведена формула распределения энергии в спектре абсолютно чёрного тела. Он установил, что свет испускается и поглощается порциями-квантами с определённой частотой колебаний. А энергия каждого кванта равна частоте колебания, умноженной на постоянную величину , получившую название константы Планка.

E = hn , где n – частота колебаний, h –константа Планка.

Константу Планка называют основной константой квантовой теории , или квантом действия .

Это величина, связывающая величину энергии кванта электромагнитного излучения с его частотой. Но так как любое излучение происходит квантами, то константа Планка справедлива для любой линейной колебательной системы.

19 декабря 1900 г., когда на заседании Берлинского физического общества Планк доложил о своём предположении, стал днём рождения квантовой теории.

В 1901 г. на основе данных по излучение чёрного тела Планку удалось вычислить значение постоянной Больцмана . Он также получил число Авогадро (число атомов в одном моле) и установил величину заряда электрона с высочайшей точностью.

В 1919 г. Планк стал лауреатом Нобелевской премии по физике за 1918 г. за заслуги «в деле развития физики благодаря открытию квантов энергии».

В 1928 г. Максу Планку исполнилось 70 лет. Он вышел в формальную отставку. Но сотрудничество с Обществом фундаментальных наук кайзера Вильгельма не прекратил. В 1930 г. он стал президентом этого общества.

Планк был членом академий наук Германии и Австрии, научных обществ и академий Ирландии, Англии, Дании, Финляндии, Нидерландов, Греции, Италии, Венгрии, Швеции, США и Советского Союза.Германское физическое общество учредило медаль Планка. Это высшая награда этого общества. И первым почётным её обладателем стал сам Макс Планк.

Поделитесь с друзьями или сохраните для себя:

Загрузка...