Научно-техническая революция как определяющий фактор развития промышленности в мировой экономике. Научно-техническая революция: характерные черты и составные части Производство новых материалов нтр страны

Здравствуйте дорогие читатели! В данной статье хотелось бы поговорить о том, как происходило развитие науки и техники на Земле. Какие бывают пути развития для этого...

Развитие цивилизации связано с научно-техническим прогрессом. Выделяют отдельные периоды глубокого и быстрого изменения продуктивных сил. Этот процесс основан на превращении науки в непосредственную продуктивную силу общества. Такие периоды имеют название – научно-техническая революция (НТР) .

К средине XX века относится начало современной НТР, в которой, как правило, выделяют 4 главные черты.

Во-первых – это универсальность. Эта революция касается всех сфер человеческой деятельности и охватывает практически все отрасли народного хозяйства. С современной НТР ассоциируются такие понятия как, телевизор, АЭС, космический корабль, реактивный самолет, компьютер и т. д.

Во-вторых – это бурное развитие техники и науки. Резко сократилась дистанция от фундаментального открытия до применения его на практике. 102 года прошло с момента открытия принципа фотографирования до первого фотоснимка, а например, для лазера этот период сократился всего к 5 годам.

В-третьих – это изменение человеческой роли в процессе производства. Требования к уровню квалификации трудовых ресурсов повышается в процессе НТР. Часть умственного труда, конечно же, увеличивается в этих условиях.

В-четвертых – это то, что современная НТР зародилась в годы второй мировой, как военно-техническая, и много в чем продолжала оставаться такой на протяжении всего периода после войны.

Сегодня, современная научно-техническая революция является сложной системой, которая состоит из четырех взаимодействующих частей: 1) наука; 2) технология и техника; 3) производство; 4) управление.

В эпоху НТР, наука является очень сложным компонентом знаний. Это большая сфера человеческой деятельности, в которой занято множество людей по всему миру. Особенно увеличилась связь производства и науки. Производство стало более научным, то есть на научное исследование в производстве продукции повышается уровень затрат.

Затраты на науку в развитых странах становят 2 – 3% ВВП. А в развивающихся странах эти затраты составляют всего лишь доли процента.

Развитие технологии и техники в условиях НТР происходит по двум путям – революционному и эволюционному.

Революционный путь – основной в развитии технологии и техники в эпоху НТР. Суть этого пути в переходе к принципиально новой технологии и технике. Вторую волну НТР, начавшуюся в 70-е годы, не случайно часто называют «микроэлектронной революцией».

Переход к новейшим технологиям также имеет большое значение. На уровне с традиционными путями усовершенствования производства, интенсивно развиваются новейшие направления производства, из которых можно выделить 6 главных направлений.

1. Электронизация. Это насыщение электронно-вычислительной техникой всех сфер деятельности.

2. Комплексная автоматизация или применение робототехники, и создание новых гибких производственных систем, заводов-автоматов.

3. Перестройка энергетического хозяйства. Она основана на сохранении энергии, использовании новых источников энергии, усовершенствовании структуры топливно-энергетического баланса.

4. Производство принципиально новых материалов, например, титан, литий, оптическое волокно, бериллий, композиционные, керамические материалы, полупроводниковые.

5. Ускоренное развитие биотехнологии.

6. Космизация и возникновение аэрокосмической промышленности, что способствовало появлению новых сплавов, машин, приборов.

Эволюционный путь проявляется в увеличении грузоподъемности транспортных средств, в увеличении мощности продуктивности оборудования и машин, а также в постоянном усовершенствовании технологии и техники.

Например, самый большой морской танкер, в начале 50-х, вмещал 50 тыс. тонн нефти, а в 70-е годы, уже начали строить супер танкеры которые вмещали 500 тыс. тонн и более.

Новыми требованиями к управлению характеризуется современный этап НТР. Современное человечество переживает период информационной революции, который начался с перехода от обычной (бумажной) к электронной (компьютерной) информации.

Одной из новейших наукоемких отраслей промышленности стал выпуск различной информационной техники. Информатика, в этой ситуации, имеет большое значение. Информатика – это наука про сбор, обработку и использование информации.

Таким образом, научно-техническая революция не зря носит такое название. Она как любая другая революция несет всякого рода перемены: в производство, науку и технику, очень помогает современному человечеству в развитии, и уже является неотъемлемой частью повседневной жизни.

  • I.2.Возникновение философии Предварительные замечания
  • I.2.1 Традиционное общество и мифологическое сознание
  • I.2.2 Мир и человек в мифе
  • I.2.3 Мир, человек, боги в поэмах Гомера и Гесиода
  • I.2.4.Ситуация «потери Пути»
  • I.2.5.Предфилософия: Гесиод
  • I.2.6. Мудрость и любовь к мудрости
  • Глава II. Основные этапы исторического
  • II.2. Классическая греческая философия.
  • II.2.1.Сократ
  • II.2.2.Платон
  • II.2.3.Академия Платона
  • II.2.4.Аристотель
  • II.3.Философия эпохи эллинизма
  • II.3.1.Эпикуреизм
  • II.3.2.Стоицизм
  • II.3.3. Общая характеристика античной философии
  • II.4. Философия древней Индии и Китая. Аксиомы "западной" культуры
  • II.4.1.Философия древней Индии.
  • II.4.2.Буддизм
  • II.4.3.Три драгоценности буддизма
  • II.4.4.Чань-буддизм
  • II.5.Философия древнего Китая
  • II.5.1.Даосизм: Небо-дао-мудрость
  • Даосизм и греческая философия
  • Человек
  • II.5.2.Конфуций
  • Знание – преодоление себя
  • Обретение Пути
  • Справедливость – судьба
  • Природа человека
  • «Благородный муж»
  • Сыновняя почтительность
  • II.5.3.Сократ – Конфуций
  • II.6. Философия в средние века
  • II.6.1. Античная культура и христианство
  • Бог, человек, мир в христианстве. Вера вместо разума
  • Новый образец: любовь, терпение, сострадание
  • Человек: между греховностью и совершенством
  • Жить сообразно природе или следуя Богу?
  • "Природа" и свобода
  • II.6.2. Религиозный характер философии средневековья.
  • IX.Патристика и схоластика
  • II.7. Философия Нового времени. Выдающиеся европейские философы XVII-XVIII вв. Русские философы XVIII в.
  • II.8. Немецкая классическая философия.
  • X.Вторая историческая форма диалектики
  • II.9. Философия марксизма. Третья историческая форма диалектики
  • II.10. Философский иррационализм.
  • II.10.1. Шопенгауэр
  • Мир как воля и представление
  • Человек в мире
  • Феномен сострадания: путь к свободе
  • II.10.2.Ницше
  • Воля к власти
  • Человек и сверхчеловек
  • Тело и душа
  • Человек должен стать свободным
  • II.11. Русская философия XIX в.
  • II.12. Панорама философии хх века
  • XII.2ii.12.1.Философия "серебряного века" русской культуры
  • XIII.II.12.2.Советская философия
  • XIV.II.12.3.Неопозитивизм
  • XV.II.12.4.Феноменология
  • XVI.II.12.5.Экзистенциализм
  • XVI.2ii.12.6.Герменевтика
  • Глава III. Философские и естественнонаучные картины мира
  • III.I. Понятия «картина мира» и «парадигма». Естественнонаучная и философская картины мира.
  • III.2. Натурфилософские картины мира эпохи античности
  • III.2.1. Первый (ионийский) этап в древнегреческой натурфилософии. Учение о первоначалах мира. Миропонимание пифагореизма
  • III.2.2. Второй (афинский) этап развития древнегреческой натурфилософии. Возникновение атомистики. Научное наследие Аристотеля
  • III.2.3. Третий (эллинистский) этап в древнегреческой натурфилософии. Развитие математики и механики
  • III.2.4. Древнеримский период античной натурфилософии. Продолжение идей атомистики и геоцентрической космологии
  • III.3. Естественнонаучная и математическая мысль эпохи Средневековья
  • III.4. Научные революции эпохи нового времени и смена типов миропонимания
  • III.4.1. Научные революции в истории естествознания
  • III.4.2. Первая научная революция. Смена космологической картины мира
  • III.4.3. Вторая научная революция.
  • Создание классической механики и
  • Экспериментального естествознания.
  • Механистическая картина мира
  • III.4.4. Естествознание Нового времени и проблема философского метода
  • III.4.5. Третья научная революция. Диалектизация естествознания и очищение его от натурфилософских представлений.
  • III.5 диалектико-материалистическая картина мира второй половины XIX века
  • III.5.1. Формирование диалектико- материалистической картины мира
  • III.5.2. Эволюция понимания материи в истории философии и естествознания. Материя как объективная реальность
  • III.5.3. От метафизико-механического – к диалектико-материалистическому пониманию движения. Движение как способ существования материи
  • III.5.4. Понимание пространства и времени в истории философии и естествознания. Пространство и время как формы бытия движущейся материи
  • III.5.5. Принцип материального единства мира
  • III.6. Четвертая научная революция первых десятилетий хх века. Проникновение в глубь материи. Квантово-релятивистские представления о мире
  • III.7. Естествознание хх века и диалектико-материалистическая картина мира
  • Глава iy.Природа, общество, культура
  • Iy.1. Природа как естественная основа жизни и развития общества
  • Iy.2. Современный экологический кризис
  • Iy.3. Общество и его структура. Социальная стратификация. Гражданское общество и государство.
  • Iy.4. Человек в системе социальных связей. Свобода и необходимость в общественной жизни.
  • 4.5. Специфика философского
  • Подхода к культуре.
  • Культура и природа.
  • Функции культуры в обществе
  • Глава y. Философия истории. Y.I. Возникновение и развитие философии истории
  • Y.2. Формационная концепция общественного развития в философии истории марксизма
  • Y.3. Цивилизационный подход к истории человечества. Традиционные и техногенные цивилизации
  • Y.4. Цивилизационные концепции «индустриализма» и «постиндустриализма» y.4.1. Концепция «Стадий экономического роста»
  • Y.4.2. Концепция «индустриального общества»
  • Y.4.3. Концепция «постиндустриального (технотронного) общества»
  • Y.4.4. Концепция «третьей волны» в развитии цивилизации
  • Y.4.5. Концепция «информационного общества»
  • Y.5. Философия истории марксизма и
  • Современные «индустриальные» и
  • «Постиндустриальные» концепции
  • Развития общества
  • Глава yi. Проблема человека в философии,
  • Науке и социальной практике
  • Yi. 1.Человек во Вселенной.
  • Антропный космологический принцип
  • Yi.2. Биологическое и социальное в человеке.
  • XVII.Человек как индивид и личность
  • Yi.3. Сознание и самосознание человека
  • Yi.4. Проблема бессознательного.
  • XVIII.Фрейдизм и неофрейдизм
  • Yi.5. Смысл человеческого бытия. Свобода и ответственность.
  • Yi.6. Мораль, нравственные ценности, право, Справедливость.
  • Yi.7. Представления о совершенном человеке в различных культурах
  • Глава yii. Познание и практика
  • VII.1. Субъект и объект познания
  • Yii.2. Этапы процесса познания. Формы чувственного и рационального познания
  • Yii.3. Мышление и формальная логика. Индуктивный и дедуктивный типы умозаключения.
  • Yii.4. Практика, ее виды и роль в познании. Специфика инженерной деятельности
  • Yii.5. Проблема истины. Характеристики истины.Истина, заблуждение, ложь. Критерии истины.
  • Глава yiii. Методы научного познания yiii.I ПонятиЯ метода и методологии. Классификация методов научного познания
  • Yiii.2. Принципы диалектического метода, их применение в научном познании. Yiii.2.1.Принцип всесторонности рассмотрения изучаемых объектов. Комплексный подход в познании
  • XVIII.1yiii.2.2.Принцип рассмотрения во взаимосвязи.
  • XIX.Системное познание
  • Yiii.2.3.Принцип детерминизма. Динамические и статистические закономерности. Недопустимость индетерминизма в науке
  • Yiii.2.4.Принцип изучения в развитии. Исторический и логический подходы в познании
  • Yiii.3. Общенаучные методы эмпирического познания yiii.3.1.Научное наблюдение
  • Yiii.3.3.Измерение
  • Yiii.4. Общенаучные методы теоретического познания yiii.4.1.Абстрагирование. Восхождение от
  • Yiii.4.2.Идеализация. Мысленный эксперимент
  • Yiii.4.3.Формализация. Язык науки
  • Yiii.5. Общенаучные методы, применяемые на эмпирическом и теоретическом уровнях познания yiii.5.1.Анализ и синтез
  • Yiii.5.2.Аналогия и моделирование
  • IX. Наука, техника, технология
  • IX.1. Что такое наука?
  • IX.2.Наука как особый вид деятельности
  • IX.3.Закономерности развития науки.
  • IX.4. Классификация наук
  • XXI.Механика ® прикладная механика
  • IX.5. Техника и технология как социальные явления
  • IX.6. Взаимоотношение науки и техники
  • IX.7. Научно-техническая революция, ее технологические и социальные последствия
  • IX.8. Социальные и этические проблемы научно-технического прогресса
  • IX.9.Наука и религия
  • Глава х. Глобальные проблемы современности х.I. Социально-экономические, военно-политические и духовные характеристики мировой ситуации на рубеже хх и ххi веков.
  • Х.2. Многообразие глобальных проблем, их общие черты и иерархия
  • Х.3. Пути преодоления глобальных кризисных ситуаций и стратегия дальнейшего развития человечества
  • IX.7. Научно-техническая революция, ее технологические и социальные последствия

    Научно-техническая революция (НТР) – понятие, используемое для обозначения тех качественных преобразований, которые произошли в науке и технике во второй половине ХХ века. Начало НТР относится к середине 40-х гг. ХХв. В ходе ее завершается процесс превращения науки в непосредственную производительную силу. НТР изменяет условия, характер и содержание труда, структуру производительных сил, общественное разделение труда, отраслевую и профессиональную структуру общества, ведёт к быстрому росту производительности труда, оказывает воздействие на все стороны жизни общества, включая культуру, быт, психологию людей, взаимоотношение общества с природой.

    Научно-техническая революция- длительный процесс, который имеет две главные предпосылки - научно-техническую и социальную. Важнейшую роль в подготовке НТР сыграли успехи естествознания в конце XIX – в начале ХХвв., в результате которых произошёл коренной переворот во взглядах на материю и сложилась новая картина мира. Были открыты: электрон, явление радиоактивности, рентгеновские лучи, создана теория относительности и квантовая теория. Совершился прорыв науки в область микромира и больших скоростей.

    Революционный сдвиг произошёл и в технике, в первую очередь под влиянием применения электричества в промышленности и на транспорте. Было изобретено радио, получившее широкое распространение. Родилась авиация. В 40-х гг. наука решила проблему расщепления атомного ядра. Человечество овладело атомной энергией. Важнейшее значение имело возникновение кибернетики. Исследования по созданию атомных реакторов и атомной бомбы впервые заставили капиталистические государства организовать в рамках крупного национального научно-технического проекта взаимодействие науки и промышленностисти. Это послужило школой для осуществления общенациональных научно-технических исследовательских программ.

    Начался резкий рост ассигнований на науку, числа исследовательских учреждений. 1 Научная деятельность стала массовой профессией. Во II-й половине 50-х гг. под влиянием успехов СССР в изучении космоса и советского опыта организации и планирования науки в большинстве стран началось создание общегосударственных органов планирования и управления научной деятельностью. Усилились непосредственные связи между научными и техническими разработками, ускорилось использование научных достижений в производстве. В 50-х гг. создаются и получают широкое применение в научных исследованиях, производстве, а затем и управлении электронно-вычислительные машины (ЭВМ), ставшие символом НТР. Их появление знаменует начало постепенной передачи машине выполнения элементарных логических функций человека. Развитие информатики, вычислительной техники, микропроцессоров и робототехники создало условия для перехода к комплексной автоматизации производства и управления. ЭВМ - принципиально новый вид техники, изменяющий положение человека в процессе производства.

    На современном этапе своего развития научно-техническая революция характеризуется следующими основными чертами.

    1). .Превращением науки в непосредственную производительную силу в результате слияния воедино переворота в науке, технике и производстве, усиления взаимодействия между ними и сокращения сроков от рождения новой научной идеи до её производственного воплощения. 1

    2). Новым этапом общественного разделения труда, связанным с превращением науки в ведущую сферу развития общества.

    3).Качественным преобразованием всех элементов производительных сил - предмета труда, орудий производства и самого работника; возрастающей интенсификацией всего процесса производства благодаря его научной организации и рационализации, постоянному обновлению технологии, сбережению энергии, снижению материалоёмкости, капиталоёмкости и трудоёмкости продукции. Приобретаемое обществом новое знание позволяет сократить затраты на сырьё, оборудование и рабочую силу, многократно окупая расходы на научные исследования и технические разработки.

    4) Изменением характера и содержания труда, возрастанием в нём роли творческих элементов; превращением процесса производства из простого процесса труда в научный процесс.

    5). Возникновением на этой основе материально-технических предпосылок сокращения ручного труда и замены его механизированным. В дальнейшем происходит автоматизация производства на основе применения электронно-вычислительной техники.

    6). Созданием новых источников энергии и искусственных материалов с заранее заданными свойствами.

    7). Огромным повышением социального и экономического значения информационной деятельности, гигантским развитием средств массовой коммуникации.

    8). Ростом уровня общего и специального образования и культуры населения.

    9). Увеличением свободного времени.

    10). Возрастанием взаимодействия наук, комплексного исследования сложных проблем, роли социальных наук.

    11). Резким ускорением всех общественных процессов, дальнейшей интернационализацией всей человеческой деятельности в масштабе планеты, возникновением так называемых глобальных проблем.

    Наряду с основными чертами НТР можно выделить определенные этапы ее развития и главные научно-технические и технологические направления, характерные для этих этапов.

    Достижения в области атомной физики (осуществление цепной ядерной реакции, открывшей путь к созданию атомного оружия), успехи молекулярной биологии (выразившиеся в раскрытии генетической роли нуклеиновых кислот, расшифровке молекулы ДНК и последующего ее биосинтеза), а также появление кибернетики (установившей определенную аналогию между живыми организмами и некоторыми техническими устройствами, являющимися преобразователями информации) дали старт научно-технической революции и определили главные естественнонаучные направления ее первого этапа. Этот этап, начавшийся в 40-х – 50-х годах ХХ века, продолжался почти до конца 70-х годов. Основными техническими направлениями первого этапа НТР явились атомная энергетика, электронно-вычислительная техника (ставшая технической базой кибернетики) и ракетно-космическая техника.

    С конца 70-х годов ХХ столетия начался второй этап НТР, продолжающийся до сих пор. Важнейшей характеристикой данного этапа НТР стали новейшие технологии, которых не было в середине ХХ века (в силу чего второй этап НТР получил даже наименование «научно-технологической революции»). К таким новейшим технологиям относятся гибкие автоматизированные производства, лазерная технология, биотехнологии и др. Вместе с тем новый этап НТР не только не отбросил многие традиционные технологии, но позволил существенно повысить их эффективность. Например, гибкие автоматизированные производственные системы для обработки предмета труда по-прежнему используют традиционные резание и сварку, а применение новых конструкционных материалов (керамики, пластмасс) позволило существенно улучшить характеристики давно известного двигателя внутреннего сгорания. «Поднимая известные пределы многих традиционных технологий, современный этап научно-технического прогресса доводит их, как представляется сегодня, до «абсолютного» исчерпания заложенных в них возможностей и тем самым готовит предпосылки для еще более решительного переворота в развитии производительных сил». 1

    Суть второго этапа НТР, определяемого как «научно-технологическая революция»,заключается в объективно закономерном переходе от различного рода внешних, по преимуществу механических, воздействий на предметы труда к высокотехнологичным (субмикронным) воздействиям на уровне микроструктуры как неживой, так и живой материи. Поэтому не случайна та роль, которую приобрели на этом этапе НТР генная инженерия и нанотехнология.

    За последние десятилетия существенно расширился диапазон исследований в области генной инженерии: от получения новых микроорганизмов с заранее заданными свойствами и до клонирования высших животных (а в возможной перспективе – и самого человека). Конец ХХ столетия ознаменовался небывалыми успехами в расшифровке генетической основы человека. В 1990г. стартовал международный проект «Геном человека», ставящий целью получение полного генетической карты Homo sapiens. В этом проекте принимают участие более двадцати наиболее развитых в научном отношении стран, включая и Россию.

    Описание генома человека ученым удалось получить значительно раньше планировавшихся сроков (2005-2010гг.). Уже в канун нового, XXI века были достигнуты сенсационные результаты в деле реализации указанного проекта. Оказалось, что в геноме человека – от 30 до 40 тысяч генов (вместо предполагавшихся ранее 80-100 тысяч). Это ненамного больше, чем у червяка (19 тысяч генов) или мухи-дрозофилы (13,5 тысячи). Однако, по словам директора Института молекулярной генетики РАН, академика Е.Свердлова, «сетовать на то, что у нас меньше генов, чем предполагалось, пока рано. Во-первых, по мере усложнения организмов один и тот же ген выполняет гораздо больше функций и способен кодировать большее количество белков. Во-вторых, возникает масса комбинаторных вариантов, которых нет у простых организмов. Эволюция весьма экономна: для создания нового занимается «перелицовкой» старого, а не изобретает все вновь. Кроме того, даже самые элементарные частицы, вроде гена, на самом деле невероятно сложны. Наука просто выйдет на следующий уровень познания». 2

    Расшифровка генома человека дала огромную, качественно новую научную информацию для фармацевтической промышленности. Вместе с тем оказалось, что использовать это научное богатство фармацевтической индустрии сегодня не по силам. Нужны новые технологии, которые появятся, как предполагается, в ближайшие 10-15 лет. Именно тогда станут реальностью лекарства, поступающие непосредственно к больному органу, минуя все побочные эффекты. Выйдет на качественно новый уровень трансплантология, получит развитие клеточная и генная терапия, радикально изменится медицинская диагностика и т.д.

    Еще одним из перспективнейших направлений в области новейших технологий является нанотехнология. Сферой нанотехнологии – одного из перспективнейших направлений в области новейших технологий – стали процессы и явления, происходящие в микромире, измеряемом нанометрами, т.е. миллиардными долями метра (один нанометр составляют примерно 10 атомов, расположенных вплотную один за другим). Еще в конце 50-х годов ХХ века крупный американский физик Р.Фейнман высказал предположение, что умение строить электрические цепи из нескольких атомов могло бы иметь «огромное количество технологических применений». Однако тогда это предположение будущего нобелевского лауреата никто не воспринял всерьез. 1

    В дальнейшем исследования в области физики полупроводниковых наногетероструктур заложили основы новых информационных и коммуникационных технологий. Достигнутые успехи в этих исследованиях, имеющие огромное значение для развития оптоэлектроники и электроники высоких скоростей, были отмечены в 2000 году Нобелевской премией по физике, которую разделили российский ученый, академик Ж.А.Алферов и американские ученые Г.Кремер и Дж.Килби.

    Высокие темпы роста в 80-х – 90-х годах ХХ века информационно-технологической индустрии явились следствием универсального характера использования информационных технологий, их широкого распространения практически во всех отраслях экономики. В ходе экономического развития эффективность материального производства стала во все большей степени определяться масштабами использования и качественным уровнем развития невещной сферы производства. Это означает, что в систему производства вовлекается новый ресурс – информация (научная, экономическая, технологическая, организационно-управленческая), которая, интегрируясь с производственным процессом, во многом ему предшествует, определяет его соответствие меняющимся условиям, завершает превращение производственных процессов в научно-производственные.

    Начиная с 80-х годов ХХ века, сперва в японской, затем в западной экономической литературе получил распространение термин «софтизация экономики». Его происхождение связано с превращением невещного компонента информационно-вычислительных систем («мягких» средств программного, математического обеспечения) в решающий фактор повышения эффективности их использования (по сравнению с совершенствованием их вещной, «твердой» аппаратной части). Можно сказать, что «… возрастание влияния нематериальной составляющей на весь ход воспроизводства является сутью понятия софтизации». 1

    Софтизация производства как новая технико-экономическая тенденция обозначила те функциональные сдвиги в хозяйственной практике, которые получили распространение в ходе развертывания второго этапа НТР. Отличительная черта этого этапа «… заключается в одновременном охвате практически всех элементов и стадий материального и нематериального производства, сферы потребления, создания предпосылок для нового уровня автоматизации. Этот уровень предусматривает объединение процессов разработки, производства и реализации продукции и услуг в единый непрерывный поток на базе взаимодействия развивающихся сегодня во многом самостоятельно таких направлений автоматизации, как информационно-вычислительные сети и банки данных, гибкие автоматизированные производства, системы автоматического проектирования, станки с ЧПУ, системы транспортировки и накопления изделий и управления технологическими процессами, робототехнологические комплексы. Основой для такой интеграции выступает широкое вовлечение в производственное потребление нового ресурса – информации, что открывает пути для трансформации дискретных ранее производственных процессов в непрерывные, создает предпосылки для отхода от тейлоризма. При компоновке автоматизированных систем используется модульный принцип, в результате чего проблема оперативного изменения, переналадки оборудования становится органической частью технологии и производится с минимальными издержками и практически без потерь времени». 2

    Второй этап НТР оказался в значительной сиепени связанным с таким технологическим прорывом, как появление и быстрое распространение микропроцессоров на больших интегральных схемах (так называемая «микропроцессорная революция»). Это во много обусловило формирование мощного информационно-индустриального комплекса, включающего электронно-вычислительное машиностроение, микроэлектронную промышленность, производство электронных средств связи и разнообразного конторского и бытового оборудования. Указанный крупный комплекс отраслей промышленности и сферы услуг ориентирован на информационное обслуживание как общественного производства, так и личного потребления (персональный компьютер, например, уже превратился в обычный предмет домашнего длительного пользования).

    Решительное вторжение микроэлектроники меняет состав основных фондов в нематериальном производстве, прежде всего, в кредитно-финансовой сфере, торговле, здравоохранении. Но этим не исчерпывается влияние микроэлектроники на сферу нематериального производства. Создаются новые отрасли, масштабы которых сопоставимы с отраслями материального производства. Например, в США реализация средств математического обеспечения и услуг, связанных с обслуживанием компьютеров, уже в 80-х годов превысила в денежном исчислении объемы производства таких крупных отраслей американской экономики, как авиа –, судо – или станкостроение.

    На повестке дня современной науки – создание квантового компьютера (КК). Здесь существует несколько интенсивно разрабатываемых в настоящее время направлений: твердотельный КК на полупроводниковых структурах, жидкие компьютеры, КК на «квантовых нитях», на высокотемпературных полупроводниках и т.д. Фактически все разделы современной физики представлены в попытках решения этой задачи. 1

    Пока можно говорить лишь о достижении некоторых предварительных результатов. Квантовые компьютеры еще только проектируются. Но когда они покинут пределы лабораторий, мир во много станет иным. Ожидаемый технологический прорыв должен превзойти достижения «полупроводниковой революции», в результате которой вакуумные электронные лампы уступили место кремниевым кристаллам.

    Таким образом, научно-техническая революция повлекла перестройку всего технического базиса, технологического способа производства. Вместе с тем она вызвала серьезные изменения социальной структуры общества, оказала влияние на сферы образования, досуга и т.д.

    Можно проследить, какие изменения происходят в обществе под влиянием научно-технического прогресса. Изменения в структуре производства характеризуются следующими цифрами. 2 В начале XIX века в сельском хозяйстве США было занято почти 75 процентов рабочей силы; к его середине эта доля сократилась до 65 процентов, тогда как в начале 40-х годов XX столетия она упала до 20, уменьшившись в три с небольшим раза за сто пятьдесят лет. Между тем за последние пять десятилетий она уменьшилась еще в восемь раз и составляет сегодня, по различным подсчетам, от 2,5 до 3 процентов. Незначительно отличаясь по абсолютным значениям, но полностью совпадая по своей динамике, подобные процессы развивались в те же годы в большинстве европейских стран. Одновременно произошло не менее драматическое изменение в доле занятых в промышленности. Если по окончании первой мировой войны доли работников сельского хозяйства, промышленности и сферы услуг (первичный, вторичный и третичный секторы производства) были приблизительно равными, то к концу второй мировой войны доля третичного сектора превосходила доли первичного и вторичного вместе взятых. Если в 1900 году 63 процента занятых в народном хозяйстве американцев производили материальные блага, а 37 - услуги, то в 1990 году это соотношение составляло уже 22 к 78, причем наиболее значительные изменения произошли с начала 50-х годов, когда прекратился совокупный рост занятости в сельском хозяйстве, добывающих и обрабатывающих отраслях промышленности, в строительстве, на транспорте и в коммунальных службах, то есть во всех отраслях, которые в той или иной степени могут быть отнесены к сфере материального производства.

    В 70-е годы в странах Запада (в Германии с 1972 года, во Франции - с 1975-го, а затем и в США) началось абсолютное сокращение занятости в материальном производстве, и в первую очередь - в материалоемких отраслях массового производства. Если в целом по обрабатывающей промышленности США с 1980 по 1994 год занятость снизилась на 11 процентов, то в металлургии спад составил более 35 процентов. Тенденции, выявившиеся на протяжении последних десятилетий, кажутся сегодня необратимыми; так, эксперты прогнозируют, что в ближайшие десять лет 25 из 26 создаваемых рабочих мест в США придутся на сферу услуг, а общая доля занятых в ней работников составит к 2025 году 83 процента совокупной рабочей силы. Если в начале 80-х годов доля работников, напрямую занятых в производственных операциях, не превышала в США 12 процентов, то сегодня она сократилась до 10 процентов и продолжает снижаться; однако существуют и более резкие оценки, определяющие этот показатель на уровне менее 5 процентов общего числа занятых. Так, в Бостоне, одном из центров развития высоких технологий, в 1993 году в сфере услуг было занято 463 тыс. человек, тогда как непосредственно в производстве - всего 29 тыс. Вместе с тем эти весьма впечатляющие данные не должны, на наш взгляд, служить основанием для признания нового общества «обществом услуг».

    Объем производимых и потребляемых обществом материальных благ в условиях экспансии сервисной экономики не снижается, а растет. Еще в 50-е годы Ж.Фурастье отмечал, что производственная база современного хозяйства остается и будет оставаться той основой, на которой происходит развитие новых экономических и социальных процессов, и ее значение не должно преуменьшаться. Доля промышленного производства в ВНП США в первой половине 90-х годов колебалась между 22,7 и 21,3 процента, весьма незначительно снизившись с 1974 года, а для стран ЕС составляла около 20 процентов (от 15 процентов в Греции до 30 в ФРГ). При этом рост объема материальных благ во все большей мере обеспечивается повышением производительности занятых в их создании работников. Если в 1800 году американский фермер тратил на производство 100 бушелей зерна 344 часа труда, а в 1900-м - 147, то сегодня для этого требуется лишь три человеко-часа; в 1995 году средняя производительность труда в обрабатывающей промышленности была в пять раз выше, чем в 1950-м.

    Таким образом, современное общество не характеризуется очевидным падением доли материального производства и вряд ли может быть названо «обществом услуг». Мы же, говоря о снижении роли и значения материальных факторов, имеем в виду то, что все большую долю общественного богатства составляют не материальные условия производства и труд, а знания и информация, которые становятся основным ресурсом современного производства в любой его форме.

    Становление современного общества как системы, основанной на производстве и потреблении информации и знаний, началось в 50-е годы. Уже в начале 60-х некоторые исследователи оценивали долю «индустрии знаний» в валовом национальном продукте США в пределах от 29,0 до 34,5 процента. Сегодня этот показатель определяется на уровне 60 процентов. Оценки занятости в информационных отраслях оказывались еще более высокими: так, в 1967 году доля работников «информационного сектора» составляла 53,5 процента от общей занятости, а в 80-е г.г. предлагались оценки, достигавшие 70 процентов. Знания как непосредственная производительная сила становятся важнейшим фактором современного хозяйства, а создающий их сектор оказывается снабжающим хозяйство наиболее существенным и важным ресурсом производства. Происходит переход от расширения использования материальных ресурсов к сокращению потребности в них.

    Некоторые примеры иллюстрируют это со всей очевидностью. Только за первое десятилетие «информационной» эры, с середины 70-х до середины 80-х годов, валовой национальный продукт постиндустриальных стран увеличился на 32 процента, а потребление энергии - на 5; в те же годы при росте валового продукта более чем на 25 процентов американское сельское хозяйство сократило потребление энергии в 1,65 раза. При выросшем в 2,5 раза национальном продукте Соединенные Штаты используют сегодня меньше черных металлов, чем в 1960 году; с 1973 по 1986 год потребление бензина средним новым американским автомобилем снизилось с 17,8 до 8,7 л/100 км, а доля материалов в стоимости микропроцессоров, применяемых в современных компьютерах, не превышает 2 процентов. В результате за последние сто лет физическая масса американского экспорта осталась фактически неизменной в ежегодном выражении, несмотря на двадцатикратный рост ее реальной стоимости. При этом происходит быстрое удешевление наиболее наукоемких продуктов, способствующее их широкому распространению во всех сферах хозяйства: так, с 1980 по 1995 год объем памяти стандартного персонального компьютера вырос более чем в 250 раз, а его цена из расчета на единицу памяти жесткого диска снизилась между 1983 и 1995 годами более чем в 1 800 раз. В результате возникает экономика «нелимитированных ресурсов», безграничность которых обусловлена не масштабом добычи, а сокращением потребности в них.

    Потребление информационных продуктов постоянно возрастает. В 1991 году расходы американских компаний на приобретение информации и информационных технологий, достигшие 112 млрд. долл., превысили затраты на приобретение основных производственных фондов, составившие 107 млрд. долл.; уже на следующий год разрыв между этими цифрами вырос до 25 млрд. долл. Наконец, к 1996 году первый показатель возрос фактически вдвое, до 212 млрд. долл., тогда как второй остался практически неизменным. К началу 1995 года в американской экономике при помощи информации производилось около трех четвертей добавленной стоимости, создаваемой в промышленности. По мере развития информационного сектора хозяйства становится все более очевидным, что знания являются важнейшим стратегическим активом любого предприятия, источником творчества и нововведений, основой современных ценностей и социального прогресса - то есть поистине неограниченным ресурсом.

    Таким образом, развитие современного общества приводит не столько к замене производства материальных благ производством услуг, сколько к вытеснению материальных компонентов готового продукта информационными составляющими. Следствием этого становится снижение роли сырьевых ресурсов и труда как базовых производственных факторов, что является предпосылкой отхода от массового создания воспроизводимых благ как основы благосостояния общества. Демассификация и дематериализация производства представляют собой объективную составляющую процессов, ведущих к становлению постэкономического общества.

    С другой стороны, на протяжении последних десятилетий идет и иной, не менее важный и значимый процесс. Мы имеем в виду снижение роли и значения материальных стимулов, побуждающих человека к производству.

    Все сказанное позволяет сделать вывод, что научно-технический прогресс приводит к глобальной трансформации общества. Общество вступает в новую фазу своего развития, которую многие социологи определяют как «информационное общество».

    Черты НТР

    1. Универсальность, всеохватность: задействование всех отраслей и сфер человеческой деятельности
    2. Чрезвычайное ускорение научно-технических преобразований: сокращение времени между открытием и внедрением в производство, постоянное устаревание и обновление
    3. Повышение требований к уровню квалификации трудовых ресурсов: рост наукоемкости производства
    4. Военно-техническая революция: совершенствование видов вооружения и экипировки

    Составные части НТР

    1. Наука: увеличение наукоемкости, повышение числа научных сотрудников и затрат на научные исследования
    2. Техника/Технология: повышение эффективности производства. Функции: трудосберегающая, ресурсосберегающая, природоохранная
    3. Производство:
      1. электронизация
      2. комплексная автоматизация
      3. перестройка энергетического хозяйства
      4. производство новых материалов
      5. ускоренное развитие биотехнологии
      6. космизация
    4. Управление: информатизация и кибернетический подход

    Научные революции

    Первая научная революция 17 в.

    • Связана с именами: Галилея, Кеплера, Ньютона.
    • Галилей ( -): изучал проблему движения, открыл принцип инерции, закон свободного падения тел.
    • Кеплер ( -): установил 3 закона движения планет вокруг Солнца (не объясняя причины движения планет), разработал теорию солнечных и лунных затмений, способы их предсказания, уточнил расстояние между Землей и Солнцем.
    • Ньютон ( -): сформулировал понятия и законы классической механики, математически сформулировал закон всемирного тяготения, теоретически обосновал законы Кеплера о движении планет вокруг Солнца, создал небесную механику (Закон всемирного тяготения был незыблем до кон 19 в.), создал дифференциальное и интегральное исчисление как язык математического описания физической реальности, автор многих новых физических представлений (о сочетании корпускулярных и волновых представлений о природе света и т. д.), разработал новую парадигму исследования природы (метод принципов)- мысль и опыт, теория и эксперимент развиваются в единстве, разработал классическую механику как систему знаний о механическом движении тел, механика стала эталоном научной теории, сформулировал основные идеи, понятия, принципы механической картины мира.
    • Механическая картина мира Ньютона:

    Вселенная от атомов до человека - совокупность неделимых и неизменных частиц, взаимосвязанных силами тяготения, мгновенное действие сил в пустом пространстве. Любые события предопределены законами классической механики. Мир, все тела построены из твердых, однородных, неизменных и неделимых корпускул - атомов. Основа механистической картины мира: движение атомов и тел в абсолютном пространстве с течением абсолютного времени. Свойства тел неизменны и независимы от самих тел. Природа - машина, части которой подчиняются жесткой детерминации. Синтез естественнонаучного знания на основе редукции (сведения) процессов и явлений к механическим.

    Механическая картина мира дала естественно научное понимание многих явлений природы, освободив их от мифологических и религиозных схоластических толкований. Ее недостаток - исключение эволюции, пространство и время не связаны. Экспансия механической картины мира на новые области исследования (химия, биология, знания о человеке и обществе). Синонимом понятия науки стало понятие механики. Однако накапливались факты, не согласовывающиеся с механистической картиной мира и к середине 19 в. она утратила статус общенаучной.

    Вторая научная революция кон. 18 в. - 1 половина 19 в.

    • Переход от классической науки, ориентированной на изучение механических и физических явлений, к дисциплинарно организованной науке
    • Появление дисциплинарных наук и их специфических объектов
    • Механистическая картина мира перестает быть общемировоззренческой
    • Возникает идея развития (биология, геология)
    • Постепенный отказ эксплицировать любые научные теории в механистических терминах
    • Начало возникновения парадигмы неклассической науки
    • Максвелл и Больцман признавали принципиальную допустимость множества теоретических интерпретаций в физике, выражали сомнение в незыблемости законов мышления, их историчности
    • Больцман: «как избежать того, чтобы образ теории не казался собственно бытием?»

    Третья научная революция кон. 19 в. - середина 20 в.

    • Фарадей - понятия электромагнитного поля
    • Максвелл - электродинамика, статистическая физика
    • Материя - и как вещество и как электромагнитное поле
    • Электромагнитная картина мира, законы мироздания - законы электродинамики
    • Лайель - о медленном непрерывном изменении земной поверхности
    • Ламарк - целостная концепция эволюции живой природы
    • Шлейден , Шванн - теория клетки - о единстве происхождении и развития всего живого
    • Майер , Джоуль , Ленц - закон сохранения и превращения энергии - теплота, свет, электричество, магнетизм и тд переходят одна в другую и являются формами одного явления, эта энергия не возникает из ничего и не исчезает.
    • Дарвин - материальные факторы и причины эволюции - наследственность и изменчивость
    • Беккерель - радиоактивность
    • Рентген - Лучи
    • Томсон - элементарная частица электрон
    • Резерфорд - планетарная модель атома
    • Планк - квант действия и закон излучения
    • Бор - квантовая модель атома Резерфорда-Бора
    • Эйнштейн - общая теория относительности - связь между пространством и временем
    • Бройль -все материальные микрообъекты обладают как корпускулярными, так и волновыми свойствами (квантовая механика)
    • Зависимость знания от применяемых исследователем методов
    • Расширение идеи единства природы - попытка построить единую теорию всех взаимодействий
    • Принцип дополнительности - необходимость применять взаимоисключающие наборы классических понятий (например, частиц и волн), только совокупность взаимоисключающих понятий дает исчерпывающую информацию о явлениях. Это совершенно новый метод мышления, диктующий необходимость освобождения от традиционных методологических ограничений
    • Появление неклассического естествознания и соответствующего типа рациональности
    • Мышление изучает не объект, а то, как явилось наблюдателю взаимодействие объекта с прибором
    • Научное знание характеризует не действительность как она есть, а сконструированную чувствами и рассудком исследователя реальность
    • Тезис о непрозначности бытия - отсутствие идеальных моделей
    • Допущение истинности нескольких отличных друг от друга теорий одного и того же объекта
    • Относительная истинность теорий и картины природы, условность научного знания.

    Об относительной истине и условности научного знания писал американский физик Ричард Фейман :

    "Вот почему наука недостоверна. Как только вы скажете что-нибудь об области опыта, с которой непосредственно не соприкасались, вы сразу же лишаетесь уверенности. Но мы обязательно должны говорить о тех областях, которых никогда не видели, иначе от науки не будет проку. Поэтому, если мы хотим, чтобы от науки была какая-то польза, мы должны строить догадки. Чтобы науке не превратиться в простые протоколы проделанных опытов, мы должны выдвигать законы, простирающиеся на еще неизведанные области. Ничего дурного тут нет. Только наука из-за этого оказывается недостоверной, а если вы думали, что наука достоверна - вы ошибались".

    Четвертая научная революция 90-е годы 20 в.

    • Постнеклассическая наука - термин ввёл В. С. Степин в своей книге «Теоретическое знание»
    • Объекты ее изучения: исторически развивающиеся системы (земля, вселенная и т. д.)

    Большое значение для правильного понимания процессов, наблюдающихся в общественной жизни, имеет анализ современной научно-технической революции.

    — это качественное преобразование , превращение науки в производительную силу и соответствующее этому коренное изменение материально-технической базы общественного производства, его формы и содержания, характера , .

    оказывает влияние на всю структуру производства и на самого человека . Основные черты научно-технической революции:
    • универсальность — охватывает практически все отрасли народного хозяйства и затрагивает все сферы человеческой деятельности;
    • бурное развитие науки и техники;
    • изменение роли человека в процессе производства — в процессе научно-технической революции повышаются требования к уровню квалификации , увеличивается доля умственного труда.

    Современная научно-техническая революция характеризуется следующими изменениями в сфере производства:

    Во-первых , изменяются условия, характер и содержание труда за счет внедрения достижений науки в производство. На смену прежним видам труда приходит машинно-автоматизированный труд. Введение автоматов значительно увеличивает производительность труда, снимая с производства ограничения в скорости, точности, непрерывности и т.д., связанными с психофизиологическими свойствами человека. При этом изменяется место человека в производстве. Возникает новый тип связи "человек-техника", который не ограничивает развитие ни человека, ни техники. В условиях автоматизированного производства машины производят машины.

    Во-вторых , начинают применяться новые виды энергии — атомной, морских отливов, земных недр. Происходит качественное изменение использования электромагнитной и солнечной энергии.

    В-третьих , происходит замена естественных материалов искусственными. Широкое применение находят пластмассы и полихлорвиниловые изделия.

    В-четвертых , изменяется технология производства. Например, механическое воздействие на предмет труде заменяется физико-химическим воздействием. При этом используются магнито-импульсные явления, ультразвук, сверхчастоты, электро-гидравлический эффект, различные виды излучения и т.п.

    Современная технология характеризуется тем, что циклические технологические процессы все более вытесняются непрерывными поточными процессами.

    Новые технологические методы предъявляют и новые требования к орудиям труда (повышенная точность, надежность, способность к саморегулированию), к предметам труда (точно заданное качество, четкий режим подачи и т.д.), к условиям труда (строго заданные требования к освещенности, температурному режиму в помещениях, их чистоте и т.д.).

    В-пятых , изменяется характер управления. Применение автоматизированных систем управления изменяет место человека в системе управления и производственного контроля.

    В-шестых , изменяется система выработки, хранения и передачи информации. Применение компьютеров значительно ускоряет процессы связанные с выработкой и использованием информации, совершенствует методы принятия и оценки решений.

    В-седьмых , изменяются требования к профессиональной подготовке кадров. Быстрое изменение средств производства ставит задачу постоянного профессионального совершенствования, повышения уровня квалификации. От человека требуется профессиональная мобильность и более высокий уровень нравственности. Растет численность интеллигенции, повышаются требования к ее профессиональной подготовке.

    В-восьмых , совершается переход от экстенсивного к интенсивному развитию производства.

    Развитие техники и технологии в условиях НТР

    В условиях научно-технической революции развитие техники и технологии происходит двумя путями:

    • эволюционным;
    • революционным.

    Эволюционный путь состоит в постоянном совершенствовании техники и технологии, а также в увеличении мощности производительности машин и оборудования, в росте грузоподъемности транспортных средств и т.д. Так, в начале 50-х годов самый крупный морской танкер вмещал 50 тыс. т нефти. В 70-е годы стали производить супертанкеры грузоподъемностью 500 тыс. т и более.

    Революционный путь является основным путем развития техники и технологии в эпоху научно-технической революции и заключается в переходе к принципиально новой технике и технологии. Революционный путь — главный путь развития техники и технологии в эпоху НТР.

    Процесс автоматизации производства

    Техника в период научно-технической революции вступает в новый этап своего развития — этап автоматизации .

    Превращение науки в непосредственную производительную силу и автоматизация производства — это важнейшие характеристики научно-технической революции . Они изменяют связь человека и техники. Наука играет роль генератора новых идей, а техника выступает их материальным воплощением.

    Процесс автоматизации производства ученые делят на ряд ступеней:
    • Первая характеризуется распространением полуавтоматической механики. Рабочий дополняет технологический процесс интеллектуальной и физической силой (загрузка, разгрузка автоматов).
    • Вторая ступень характеризуется появлением станков с программным управлением на основе компьютерной оснащенности процесса производства.
    • Третья ступень связана с комплексной автоматизацией производства. Для этой ступени характерны автоматизированные цехи и заводы-автоматы.
    • Четвертая ступень является периодом завершенной автоматизации хозяйственного комплекса, становящегося саморегулирующейся системой.

    Изложенное свидетельствует о том, что научно-техническая революция выражается в качественном преобразовании системы жизнеобеспечения людей .

    Научно-техническая революция преобразует не только сферу производства, но и изменяет среду , быта, расселения и другие сферы общественной жизни.

    Характерными особенностями хода научно-технической революции:
    • Во-первых, научно-техническая революция сопровождается концентрацией капитала. Объясняется это тем, что техническое перевооружение предприятий требует концентрации финансовых средств и значительных их затрат.
    • Во-вторых, процесс научно-технической революции сопровождается углублением разделения труда. В-третьих, рост экономического могущества фирм приводит к усилению влияния с их стороны на политическую власть.

    Осуществление научно-технической революции имеет и некоторые негативные последствия в виде увеличения социального неравенства, усиления давления на природную среду, увеличения разрушительности войн, снижения социального здоровья и т.д.

    Одной из важнейших общественных задач выступает реализация необходимости максимального использования положительных последствий научно-технической революции и снижение объема ее негативных последствий.

    Научно-техническая революция

    Нау́чно-техни́ческая революция (НТР ) - коренное качественное преобразование производительных сил , качественный скачок в структуре и динамике развития производительных сил.

    Научно-техническая революция в узком смысле - коренная перестройка технических основ материального производства, начавшееся в середине XX в. , на основе превращения науки в ведущий фактор производства, в результате которого происходит трансформация индустриального общества в постиндустриальное .

    В основе многих выдвинутых ныне теорий и концепций, объясняющих глубинные изменения в экономической и социальной структурах передовых стран мира , начавшиеся в середине XX в., лежит признание нарастания значения информации в жизни общества . В связи с этим говорят также об информационной революции.

    История

    В произведениях культуры и искусства

    • Альбом «Revolutions » исполнителя Жана-Мишеля Жарра (1988)

    См. также

    • Научная революция

    Ссылки

    • Научный коммунизм: Словарь (1983) - Научно-техническая революция
    • Т. Н. Лукиных, Г. В. Можаева . Информационные революции и их роль в развитии общества

    Wikimedia Foundation . 2010 .

    Смотреть что такое "Научно-техническая революция" в других словарях:

      Коренное, качеств. преобразование производит. сил на основе превращения науки в ведущий фактор развития обществ. производства. В ходе Н. т.р., начало которой относится к сер. 40 х гг. 20 в., бурно развивается и завершается процесс… … Философская энциклопедия

      - (НТР) понятие, используемое для обобщающей характеристики ряда процессов в развитии науки и техники, а также инициированных ими социальных процессов, свойственных совр. цивилизации, осн. содержание к рых сводится к превращению… … Энциклопедия культурологии

      Совокупность качественных изменений в технике, технологии и организации производства, происходящих под воздействием крупных научных достижений и открытий и оказывающих определенное влияние на социально экономические условия общественной жизни.… … Финансовый словарь

      См. РЕВОЛЮЦИЯ НАУЧНО ТЕХНИЧЕСКАЯ. Antinazi. Энциклопедия социологии, 2009 … Энциклопедия социологии

      Современная энциклопедия

      - (НТР) коренное, качественное преобразование производительных сил на основе превращения науки в ведущий фактор развития общественного производства, непосредственную производительную силу. Началась с сер. 20 в. Резко ускоряет научно технический… … Большой Энциклопедический словарь

      Научно-техническая революция - (НТР), коренное качественное преобразование производительных сил на основе превращения науки в ведущий фактор развития общественного производства. Началась с середины 20 в. Резко ускоряет научно технический прогресс, оказывает воздействие на все… … Иллюстрированный энциклопедический словарь

      - (НТР), коренной качественный переворот в производительных силах человечества, основанный ва превращении науки в непосредственную производительную силу общества. НТР принесла открытие новых материалов и источников энергии, разработку новых… … Географическая энциклопедия

      научно-техническая революция - Происходившие в ХХ в. коренные преобразования производительных сил на основе превращения науки в ведущий фактор развития общественного производства … Словарь по географии

      Коренное, качественное преобразование производительных сил на основе превращения науки в ведущий фактор развития общественного производства. В ходе Н. т. р., начало которой относится к середине 20 в., бурно развивается и завершается… … Большая советская энциклопедия

    Поделитесь с друзьями или сохраните для себя:

    Загрузка...